【題目】已知偶函數(shù),當(dāng)時,,若,為銳角三角形的兩個內(nèi)角,則( )
A. B.
C. D.
【答案】B
【解析】
根據(jù)題意,由函數(shù)的解析式可得f(x)在(-1,0)上為減函數(shù),結(jié)合函數(shù)的奇偶性可得f(x)在(0,1)上為增函數(shù),又由α,β為銳角三角形的兩個內(nèi)角分析可得sinα>sin(90°﹣β)=cosβ,結(jié)合函數(shù)的單調(diào)性分析可得答案.
根據(jù)題意,當(dāng)x∈(﹣1,0)時,f(x)=2﹣x=()x,則f(x)在(0,1)上為減函數(shù),
又由f(x)為偶函數(shù),則f(x)在(0,1)上為增函數(shù),
若α,β為銳角三角形的兩個內(nèi)角,則α+β>90°,則α>90°﹣β,則有sinα>sin(90°﹣β)=cosβ,
則有f( sinα)>f(cosβ),
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生社團組織活動豐富,學(xué)生會為了解同學(xué)對社團活動的滿意程度,隨機選取了100位同學(xué)進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6組,制成如圖所示頻率分布直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的中位數(shù);
(3)現(xiàn)從被調(diào)查的問卷滿意度評分值在[60,80)的學(xué)生中按分層抽樣的方法抽取5人進行座談了解,再從這5人中隨機抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,,,且,.
(1)證明:平面;
(2)在線段上,是否存在一點,使得二面角的大小為?如果存在,求的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:區(qū)間,,,的長度均為,若不等式的解集是互不相交區(qū)間的并集,設(shè)該不等式的解集中所有區(qū)間的長度之和為,則( )
A. 當(dāng)時,B. 當(dāng)時,
C. 當(dāng)時,D. 當(dāng)時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中所有正確的序號是_________
①兩直線的傾斜角相等,則斜率必相等;
②若動點到定點和定直線的距離相等,則動點的軌跡是拋物線;
③已知、是橢圓的兩個焦點,過點的直線與橢圓交于、兩點,則的周長為;
④曲線的參數(shù)方程為為參數(shù),則它表示雙曲線且漸近線方程為;
⑤已知正方形,則以、為焦點,且過、兩點的橢圓的離心率為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)設(shè),若,為函數(shù)的兩個不同極值點,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知P是矩形ABCD所在平面上的一點,則有.試證明該命題.
(2)將上述命題推廣到P為空間上任一點的情形,寫出這個推廣后的命題并加以證明.
(3)將矩形ABCD進一步推廣到長方體,并利用(2)得到的命題建立并證明一個新命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位共有10名員工,他們某年的收入如下表:
員工編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(萬元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求該單位員工當(dāng)年年薪的平均值和中位數(shù);
(2)已知員工年薪收入與工作年限成正相關(guān)關(guān)系,某員工工作第一年至第四年的年薪分別為4萬元、5.5萬元、6萬元、8.5萬元,預(yù)測該員工第六年的年薪為多少?
附:線性回歸方程中系數(shù)計算公式分別為:,,其中、為樣本均值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com