【題目】如圖,在四棱錐中,平面,, ,,,,為側(cè)棱上一點.
(Ⅰ)若,求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)在側(cè)棱上是否存在點,使得平面?若存在,求出線段的長;若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,長方體中,,,點,,分別為,, 的中點,過點的平面與平面平行,且與長方體的面相交,交線圍成一個幾何圖形.
(1)在圖1中,畫出這個幾何圖形,并求這個幾何圖形的面積(不必說明畫法與理由);
(2)在圖2中,求證:平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的方程為,集合,若對于任意的,都存在,使得成立,則稱曲線為曲線,下列方程所表示的曲線中,是曲線的有______(寫出所有曲線的序號)
①;②;③;④;⑤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,動點到定點的距離與到定直線的距離的比為,動點的軌跡記為.
(1)求軌跡的方程;
(2)若點在軌跡上運動,點在圓上運動,且總有,
求的取值范圍;
(3)過點的動直線交軌跡于兩點,試問:在此坐標平面上是否存在一個定點,使得無論如何轉(zhuǎn)動,以為直徑的圓恒過點?若存在,求出點的坐標.若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某小學舉辦“父母養(yǎng)育我,我報父母恩”的活動,對六個年級(一年級到六年級的年級代碼分別為1,2…,6)的學生給父母洗腳的百分比y%進行了調(diào)查統(tǒng)計,繪制得到下面的散點圖.
(1)由散點圖看出,可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立y關(guān)于x的回歸方程,并據(jù)此預計該校學生升入中學的第一年(年級代碼為7)給父母洗腳的百分比.
附注:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線性相關(guān)程度相當高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計公式分別為= ,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以原點為極點,軸的非負半軸為極軸建立極坐標系.已知曲線的極坐標方程為,為曲線上的動點,與軸、軸的正半軸分別交于,兩點.
(1)求線段中點的軌跡的參數(shù)方程;
(2)若是(1)中點的軌跡上的動點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點,,,.
(I)證明:;
(II)求直線與平面所成角的正弦值;
(III)在邊上是否存在點,使與所成角的余弦值為,若存在,確定點位置;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com