1.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-{a^2}x+\frac{1}{2}a$(a∈R).
(Ⅰ)當a=1時,x∈[-1,2],求f(x)的最值.
(Ⅱ)若對任意x∈[0,+∞),有f(x)>0恒成立,求a的取值范圍.

分析 (Ⅰ)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)在閉區(qū)間上的單調性,從而求出函數(shù)的最值即可;
(Ⅱ)求出函數(shù)的導數(shù),通過討論a的范圍,確定函數(shù)的單調區(qū)間,從而求出函數(shù)的最小值,求出a的范圍即可.

解答 解:(Ⅰ)a=1時,f′(x)=(x+1)(x-1),
令f′(x)>0,解得:x>1或x<-1,
令f′(x)<0,解得:-1<x<1,
∴f(x)在[-1,1)遞減,在(1,2]遞增,
而f(1)=-$\frac{1}{6}$,f(-1)=f(2)=$\frac{7}{6}$,
故最大值$\frac{7}{6}$,最小值-$\frac{1}{6}$;
(Ⅱ)f′(x)=(x+a)(x-a),
令f′(x)=0,x1=-a,x2=a,
①當a=0時,f(x)在[0,+∞)上為增函數(shù),
∴f(x)min=f(0)=0不合題意;
②當a>0時,f(x)在(0,a)上是減函數(shù),在(a,+∞)上為增函數(shù),
∴f(x)min=f(a)>0,得0<a<$\frac{\sqrt{3}}{2}$;
③當a<0時,f(x)在(0,-a)上是減函數(shù),在(-a,+∞)上為增函數(shù),
∴f(x)min=f(-a)<f(0)<0,不合題意.
綜上,0<a<$\frac{\sqrt{3}}{2}$.

點評 本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用以及分類討論思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知遞增的等差數(shù)列{an},首項a1=2,Sn為其前n項和,且2S1,2S2,3S3成等比數(shù)列.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設bn=$\frac{4}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若實數(shù)x、y、z滿足x+y=6,z2=xy-9,求證:x=y.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知M⊆{1,2,3,4,5},若M中所有元素之和稱為M的“容量”(規(guī)定空集容量為0),若M的容量為奇(偶)數(shù),則稱M為奇(偶)子集.求證:
(1)M的奇子集與偶子集個數(shù)相等:
(2)奇子集與偶子集容量相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.某人射擊7槍,擊中5槍,問擊中和未擊中的不同的順序情況有( 。
A.21種B.20種C.19種D.16種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知直線y=k(x-m)與拋物線y2=2px(p>0)交于A、B兩點,O為坐標原點,OA⊥OB,OD⊥AB于D,點D在曲線x2+y2-4x=0上,則p=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)$f(x)=-alnx+\frac{{2{a^2}}}{x}+x(a∈R)$.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當a>0時,若函數(shù)f(x)在[1,e]上的最小值記為g(a),請寫出g(a)的函數(shù)表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知過拋物線y2=$\frac{16}{3}$x的焦點F的直線l交拋物線于A,B兩點,交其準線于C點,已知$\overrightarrow{CB}$=3$\overrightarrow{BF}$,則線段AB的中點M到準線的距離為( 。
A.$\frac{8}{3}$B.3C.$\frac{16}{3}$D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設函數(shù)f(x)=alnx+bx2,若函數(shù)f(x)在x=1處與直線y=-$\frac{1}{2}$相切.
(1)求實數(shù)a,b的值;
(2)求函數(shù)f(x)在[$\frac{1}{e}$,e]上的最大值.

查看答案和解析>>

同步練習冊答案