12.已知函數(shù)y=f(x+2)的定義域為(-1,0),則(f|2x-1|)的定義域為(-$\frac{1}{2}$,0)∪(1,$\frac{3}{2}$).

分析 由函數(shù)y=f(x+2)的定義域,得到x+2的范圍,由此求得|2x-1|的范圍得答案.

解答 解:∵y=f(x+2)的定義域為(-1,0),即-1<x<0
得1<x+2<2.
∴1<|2x-1|<2,解得:-$\frac{1}{2}$<x<0或1<x<$\frac{3}{2}$,
故答案為:(-$\frac{1}{2}$,0)∪(1,$\frac{3}{2}$).

點評 本題考查了函數(shù)的定義域及其求法,關(guān)鍵是掌握該類問題的解決方法,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,在復平面內(nèi),表示復數(shù)z的點為A,則復數(shù)$\frac{z}{1-2i}$對應的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在△ABC中,角A,B,C的對邊分別為a,b,c,且a=$\sqrt{5}$,b=3,sinC=2sinA,則△ABC的面積為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.由1、2、3、4、5這五個數(shù)字組成沒有重復數(shù)字的五位數(shù),將它們從小到大排列,第80個數(shù)是42153.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}的首項a1=1,an=2an-1+n2-4n+2(n=2,3,…),數(shù)列{bn}的通項為bn=an+n2(n∈N*).
(1)證明:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知等比數(shù)列{an}滿足:a1=1,Sn為其前n項和,2S1,2S3,5S2成等差數(shù)列.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設bn=log${\;}_{\frac{3}{4}}$|a1|+log${\;}_{\frac{3}{4}}$|a2|+…+log${\;}_{\frac{3}{4}}$|an+2|(bn≠0),求數(shù)列{$\frac{1}{_{n}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知數(shù)列{an},a1=2,an+1=($\sqrt{2}$-1)(an+2)(n∈N*),求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=log2(2-ax)在(-∞,1]上是減函數(shù),則a的范圍是( 。
A.[1,2]B.(1,2)C.(1,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在△ABC中,內(nèi)角A,B,C的所對的邊分別是a,b,c,已知cosC=$\frac{1}{4}$,a2=b2+$\frac{1}{2}$c2
(Ⅰ)求sin(A-B)的值;
(Ⅱ)c=$\sqrt{10}$,求a和b.

查看答案和解析>>

同步練習冊答案