17.若x,y滿足約束條件$\left\{\begin{array}{l}{x+1≤0}\\{x-y+2≥0}\\{x+2y+2≥0}\end{array}\right.$,則2x-y的最大值等于-1.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合確定z的最大值.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=2x-y得y=2x-z,
平移直線y=2x-z
由圖象可知當(dāng)直線y=2x-z經(jīng)過(guò)點(diǎn)A(-1,-1)時(shí),直線y=2x-z的截距最小,此時(shí)z最大.
代入目標(biāo)函數(shù)z=2x-y,
得z=-2+1=-1.即z=2x-y的最大值為-1.
故答案為:-1.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,結(jié)合目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.三角形ABC中,AB=2,AC=3,以BC為邊向形外作等邊三角形BCD,問(wèn)角A為何值時(shí),四邊形ABCD面積最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-1,x<-1}\\{x,-1≤x<1}\\{1,x≥1}\end{array}\right.$
(1)求f(x)的定義域;
(2)作出函數(shù)f(x)的圖象;
(3)根據(jù)圖象判斷函數(shù)f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.2015年勞動(dòng)節(jié)期間,某單位小張和小李要在5月1日到5月3日三天內(nèi)值班,每天僅需一人值班,且每人至少值班一天,則所有不同的值班方法共有(  )
A.9種B.8種C.6種D.4種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x-1}+x,x≤0}\\{-1+lnx,x>0}\end{array}\right.$ 的零點(diǎn)個(gè)數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}的首項(xiàng)a1=1,當(dāng)n≥2時(shí),an=2an-1+1;
(1)證明:數(shù)列{an+1}是等比數(shù)列;
(2)數(shù)列{bn}中,b1=1,n≥2時(shí),bn-bn-1=an,求數(shù)列{bn}的通項(xiàng)公式bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知$\left\{\begin{array}{l}{2x+y-5≥0}\\{3x-y-5≤0}\\{x-2y+5≥0}\end{array}\right.$,求(x+1)2+(y+1)2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,它的一個(gè)頂點(diǎn)到較近焦點(diǎn)的距離為1,焦點(diǎn)到漸近線的距離是$\sqrt{3}$,則雙曲線C的方程為( 。
A.x2-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$-y2=1C.$\frac{{x}^{2}}{\sqrt{3}}$-y2=1D.x2-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)任意正整數(shù)n都有an是n與Sn的等差中項(xiàng),bn=an+1.
(1)求證:數(shù)列{bn}是等比數(shù)列,并求出其通項(xiàng)bn
(2)若數(shù)列{Cn}滿足Cn=$\frac{1}{lo{g}_{2}_{n}}$且數(shù)列{C${\;}_{n}^{2}$}的前n項(xiàng)和為Tn,證明Tn<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案