10.以下命題正確的是( 。
A.小于90°的角是銳角
B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},則A⊆B
C.-950°12′是第三象限角
D.α,β終邊相同,則α=β

分析 根據(jù)角的范圍以及終邊相同角的關(guān)系分別進(jìn)行判斷即可.

解答 解:A.∵0°角滿足小于90°,但0°角不是銳角,故A錯(cuò)誤,
B.當(dāng)k=2n時(shí),β=k•90°=n•180°,
當(dāng)k=2n+1時(shí),β=k•90°=k•180°+90°,
則A⊆B成立,
C.-950°12′=-4×360°+129°48′,
∵129°48′是第二象限角,
∴-950°12′是第二象限角,故C錯(cuò)誤,
D.α,β終邊相同,則α=β+k•360°,k∈Z,故D錯(cuò)誤,
故選:B

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及角的范圍和推廣,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知雙曲線的一個(gè)焦點(diǎn)F(0,5),它的漸近線方程為y=±2x,則該雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{20}$-$\frac{{x}^{2}}{5}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知sin($\frac{π}{6}$+α)=-$\frac{1}{3}$,且$\frac{5π}{6}$<α<$\frac{4π}{3}$,求tan($\frac{5π}{3}$+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,已知$a=1,b=2,cosC=\frac{1}{4}$.
(1)求△ABC的周長(zhǎng)和面積;
(2)求cos(A+C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\sqrt{3}$sinωx+cos(ωx+$\frac{π}{3}$)+cos(ωx-$\frac{π}{3}$)-1(ω>0),x∈R,且函數(shù)的最小正周期為π:
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,若f(B)=0,$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{3}{2}$,且a+c=4,試求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC中,A>B,有下列五個(gè)不等式:
(1)sinA>sinB(2)cosA<cosB(3)tanA>tanB(4)cos2A<cos2B(5)sin2A+sin2C>sin2B
則其中一定成立的不等式的個(gè)數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),如對(duì)任意實(shí)數(shù)x,有f(x)>f′(x),且f(x)+1為奇函數(shù),則不等式f(x)+ex<0的解集是( 。
A.(-∞,0)B.(0,+∞)C.(-∞,$\frac{1}{e}$)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=xlnx.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間:
(Ⅱ)設(shè)0<x1<x2,0<λ<1,若λx1+(1-λ)x2=e,證明:λf(x1)+(1-λ)f(x2)>e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知(x-2)2015=a0+a1x+a2x2+…+a2015x2015,則a1+2a2+3a3+…+2015a20152015.

查看答案和解析>>

同步練習(xí)冊(cè)答案