5.已知200°的圓心角所對(duì)的圓弧長是50cm,求圓的半徑(精確到0.1cm)

分析 先將角度化為弧度,再根據(jù)弧長公式即可即可.

解答 解:圓心角200°=200×$\frac{π}{180}$=$\frac{10}{9}$π,
∵弧長為50=$\frac{10}{9}$πr,
∴r=$\frac{45}{π}$≈14.3(cm),
即該圓的半徑長14.3cm.

點(diǎn)評(píng) 本題考查了角度和弧度的互化以及弧長公式的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知$\overrightarrow a=(\sqrt{3}sinx,\;m+cosx)$,$\overrightarrow b=(cosx,-m+cosx)$,且f(x)=$\overrightarrow{a}$•$\overrightarrow$,當(dāng)$x∈[{-\frac{π}{6},\frac{π}{3}}]$時(shí),f(x)的最小值是-4,求此時(shí)函數(shù)f(x)的最大值-$\frac{5}{2}$,此時(shí)X=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)在一個(gè)周期內(nèi)的圖象如圖所示.
(])求f(x)其解析式;
(2)求f(x)的對(duì)稱中心;
(3)方程f(x)-m=0在x∈[0,$\frac{π}{2}$]上有兩個(gè)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知:函數(shù)y=(x2-ax+a)${\;}^{-\frac{1}{2}}$的定義域?yàn)橐磺袑?shí)數(shù),則a的取值范圍為(0,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知指數(shù)函數(shù)y=ax,且f(4)=2f(2).
(1)求a的值及f(2),f(4)的值;
(2)判斷y=ax的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l上有三點(diǎn)A,B,P,若$\overrightarrow{AB}$=3$\overrightarrow{BP}$且$\overrightarrow{AP}$=$λ\overrightarrow{PB}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知x,y∈R,且滿足$\left\{\begin{array}{l}{x≥1}\\{y≥x}\\{x-2y+3≥0}\end{array}\right.$,則t=$\frac{y+1}{x}$的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求函數(shù)f(x)=3sin2x+8cos2x-4,x∈[0,$\frac{π}{2}$]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)$f(x)={2^{\sqrt{-{x^2}+2x+\frac{5}{4}}}}$,對(duì)于給定的正數(shù)K,定義函數(shù)fg(x)=$\left\{{\begin{array}{l}{f(x),f(x)≥K}\\{K,f(x)<K}\end{array}}$,若對(duì)于函數(shù)$f(x)={2^{\sqrt{-{x^2}+2x+\frac{5}{4}}}}$定義域內(nèi)的任意x,恒有fg(x)=f(x),則( 。
A.K的最小值為1B.K的最大值為1C.K的最小值為$2\sqrt{2}$D.K的最大值為$2\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案