函數(shù)y=sin(3x+
4
)的圖象的一條對稱軸是( 。
A、x=-
π
12
B、x=-
π
4
C、x=
π
8
D、x=-
4
考點:正弦函數(shù)的對稱性
專題:三角函數(shù)的圖像與性質
分析:能夠使三角函數(shù)取得最值的x值就是三角函數(shù)的對稱軸,代入選項求解即可.
解答: 解:x=-
π
12
時,函數(shù)y=sin[3×(-
π
12
)
+
4
]=1,所以A滿足題意.
x=-
π
4
時,函數(shù)y=sin[3×(-
π
4
)
+
4
]=0,所以B不滿足題意.
x=
π
8
時,函數(shù)y=sin[3×
π
8
+
4
]≠±1,所以C不滿足題意.
x=-
4
時,函數(shù)y=sin[3×(-
4
)
+
4
]=0,所以D不滿足題意.
故選:A.
點評:本題考查三角函數(shù)的對稱軸的求法,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知在數(shù)列{an}中,a1=
1
6
,an=
1
2
an-1+
1
2
1
3n
(n∈N+,n≥2).
(1)證明:數(shù)列{an+
1
3n
}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
bx+c
ax2+1
是R上的奇函數(shù)(a,b,c∈Z),f(
1
2
)=
2
5
,f(2)>
1
3

(1)求a,b,c的值;
(2)判斷f(x)在(-1,1)上的單調(diào)性,并證明;
(3)判斷f(x)在(-∞,-1)和(1,+∞)上的單調(diào)性(不需要證明),并寫出函數(shù)f(x)在R上的最值;
(4)利用單調(diào)性和奇偶性作出函數(shù)f(x)的草圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=x2+2ax與直線y=2x-4相切,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x2+y2-6x+5=0,求x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)滿足f(ab)=f(a)+f(b),f(2)=3,f(3)=5,則f(36)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是函數(shù)y=f(x)=Asin(ωx+φ)(A>0,ω>0)圖象上的一段,則在區(qū)間(0,2π)上,使等式f(x)=f(0)成立的x的集合為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
1
2
arccos
x-1
的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,D為BC的中點,AD=
3
,∠ADB=60°,AC=
3
AB,則BC=
 

查看答案和解析>>

同步練習冊答案