14.下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.y=$\sqrt{{x}^{2}}$和y=($\sqrt{x}$)2B.y=lg(x2-1)和y=lg(x+1)+lg(x-1)
C.y=logax2和y=2logaxD.y=x和y=logaax

分析 根據(jù)兩個(gè)函數(shù)的定義域相同,對(duì)應(yīng)關(guān)系也相同,即可判斷它們是同一函數(shù).

解答 解:對(duì)于A,y=$\sqrt{{x}^{2}}$=|x|(x∈R),與y=${(\sqrt{x})}^{2}$=x(x≥0)的定義域不同,對(duì)應(yīng)關(guān)系也不同,不是同一個(gè)函數(shù);
對(duì)于B,y=lg(x2-1)=(x<-1或x>1),與y=lg(x+1)+lg(x-1)=lg(x2-1)(x>1)的定義域不同,不是同一個(gè)函數(shù);
對(duì)于C,y=logax2=2loga|x|(x≠0),與y=2logax(x>0)的定義域不同,對(duì)應(yīng)關(guān)系也不同,不是同一個(gè)函數(shù);
對(duì)于D,y=x(x∈R)y=logaax=x(x∈R)的定義域相同,對(duì)應(yīng)關(guān)系也相同,是同一個(gè)函數(shù).
故選:D.

點(diǎn)評(píng) 本題考查了判斷兩個(gè)函數(shù)是否為同一個(gè)函數(shù)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知α,β是兩個(gè)不重合的平面,m,n是兩條不同的直線,則下列命題中正確的是( 。
A.若m∥α,m∥β,則α∥βB.若m∥n,m∥α,則n∥α
C.若α⊥β,m⊥α,n⊥β,則m⊥nD.若α⊥β,m⊥α,n∥β,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知命題:
①函數(shù)y=2x(-1≤x≤1)的值域是$[\frac{1}{2},2]$;
②為了得到函數(shù)$y=sin(2x-\frac{π}{3})$的圖象,只需把函數(shù)y=sin2x圖象上的所有點(diǎn)向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度;
③當(dāng)n=0或n=1時(shí),冪函數(shù)y=xn的圖象都是一條直線;
④已知函數(shù)y=|log2x|,若a≠b且f(a)=f(b),則ab=1.
其中正確的命題序號(hào)是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知a=log2.10.3,b=log0.20.3,c=0.2-3.1,則a,b,c的大小關(guān)系(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知角α滿足,sin(α+$\frac{π}{4}$)=$\frac{1}{3}$,sin(α-$\frac{π}{4}$)=$\frac{1}{4}$,則tanα=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知集合M={(x,y)|y=-x+1},N={(x,y)|y=x-1},那么M∩N為{(1,0)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$與x軸的正半軸交于點(diǎn)A,若在第一象限的橢圓上存在一點(diǎn)P,使得∠PAO=$\frac{π}{6}$(O為坐標(biāo)原點(diǎn)),則該橢圓離心率的取值范圍是$(\frac{\sqrt{6}}{3},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={x|-1<x<5},B={x|x2≥4},則∁R(A∪B)=( 。
A.(-2,-1)B.(2,5)C.(-2,-1]D.(-∞,2)∪[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.廣安市2015年每個(gè)月平均氣溫(攝氏度)數(shù)據(jù)莖葉圖如圖,則這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是( 。
A.20;23B.21.5;20,23C.20;20,23D.21.5;23

查看答案和解析>>

同步練習(xí)冊(cè)答案