分析 (1)根據(jù)f(-2)=1,構造方程,可得a的值,結合奇偶性的寶義,可判定函數(shù)f(x)的奇偶性;
(2)若不等式f(x)>($\frac{1}{2}$)x+t在x∈[2,3]上恒成立,則t<log${\;}_{\frac{1}{3}}$($\frac{1+x}{x-1}$)-($\frac{1}{2}$)x在x∈[2,3]上恒成立,構造函數(shù)求出最值,可得答案.
解答 解:(1)∵函數(shù)f(x)=log${\;}_{\frac{1}{3}}$($\frac{1-ax}{x-1}$)滿足f(-2)=1,
∴l(xiāng)og${\;}_{\frac{1}{3}}$($\frac{1+2a}{-3}$)=1,
∴$\frac{1+2a}{-3}$=$\frac{1}{3}$,
解得:a=-1,
∴f(x)=log${\;}_{\frac{1}{3}}$($\frac{1+x}{x-1}$)的定義域(-∞,-1)∪(1,+∞)關于原點對稱;
又∵f(-x)=log${\;}_{\frac{1}{3}}$($\frac{1-x}{-x-1}$)=log${\;}_{\frac{1}{3}}$($\frac{x-1}{x+1}$)=-log${\;}_{\frac{1}{3}}$($\frac{1+x}{x-1}$)=-f(x),
故函數(shù)f(x)為奇函數(shù);
(2)若不等式f(x)>($\frac{1}{2}$)x+t在x∈[2,3]上恒成立,
則t<log${\;}_{\frac{1}{3}}$($\frac{1+x}{x-1}$)-($\frac{1}{2}$)x在x∈[2,3]上恒成立,
設g(x)=log${\;}_{\frac{1}{3}}$($\frac{1+x}{x-1}$)-($\frac{1}{2}$)x,
則g(x)在[2,3]上是增函數(shù).
∴g(x)>t對x∈[2,3]恒成立,
∴t<g(2)=-$\frac{5}{4}$.
點評 本題主要考查函數(shù)奇偶性的應用,單調(diào)性的證明以及不等式恒成立問題,構造函數(shù),利用參數(shù)分離法是解決函數(shù)恒成立問題的基本方法.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $2\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com