18.已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=4t-{1_{\;}}}\\{y=3t}\end{array}}\right.$(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=4sinθ,則直線l被圓C截得的弦長為( 。
A.$\sqrt{5}$B.$2\sqrt{2}$C.2$\sqrt{3}$D.2$\sqrt{5}$

分析 直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=4t-{1_{\;}}}\\{y=3t}\end{array}}\right.$(t為參數(shù)),消去t化為:3x-4y+3=0.圓C的極坐標方程為ρ=4sinθ,即ρ2=4ρsinθ,把ρ2=x2+y2,y=ρsinθ代入可得直角坐標方程.求出圓心C到直線l的距離d.利用直線l被圓C截得的弦長=2$\sqrt{{r}^{2}-mvclsae^{2}}$即可得出.

解答 解:直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=4t-{1_{\;}}}\\{y=3t}\end{array}}\right.$(t為參數(shù)),消去t化為:3x-4y+3=0.
圓C的極坐標方程為ρ=4sinθ,即ρ2=4ρsinθ,可得直角坐標方程:x2+y2=4y,配方為:x2+(y-2)2=4.可得圓心C(0,2),半徑r=2.
圓心C到直線l的距離d=$\frac{|-8+3|}{5}$=1.
則直線l被圓C截得的弦長=2$\sqrt{{r}^{2}-kt55bfp^{2}}$=2$\sqrt{3}$.
故選:C.

點評 本題考查了直角坐標與極坐標的互化、點到直線的距離公式、參數(shù)方程化為普通方程、直線與圓相交弦長公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.設數(shù)列{an}的前n項和為Sn,已知Sn=n2+n,
(Ⅰ)求{an}的通項公式
(Ⅱ)已知bn=$\frac{1}{{{a_n}^2-1}}$,數(shù)列{bn}的前n項和為Tn,證明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若函數(shù)f(x)=(x2+mx)ex(e為自然對數(shù)的底)的單調遞減區(qū)間是[-$\frac{3}{2}$,1],則實數(shù)m=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=log${\;}_{\frac{1}{3}}$($\frac{1-ax}{x-1}$)滿足f(-2)=1,其中a為實常數(shù).
(1)求a的值,并判定函數(shù)f(x)的奇偶性;
(2)若不等式f(x)>($\frac{1}{2}$)x+t在x∈[2,3]上恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖:已知⊙O是△ABC的外接圓,AB=BC,AH是BC邊上的高,延長交⊙O于點D,AE是⊙O的直徑.
(1)求證:AE•BH=BD•AB;
(2)過點C作⊙O的切線,交BA延長線于點F,若AF=2,CF=4,求AC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在△ABC中,∠BAC的平分線交BC于D,交△ABC的外接圓于E,延長AC交△DCE的外接圓于F
(1)求證:BD=DF;
(2)若AD=3,AE=5,求EF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在六面體ABCDEFG中,△ABC是邊長為4正三角形,AE∥CD,AE⊥平面ABC,AE⊥平面DEFG,AE=CD=3,DG=EF=2.
(1)求該六面體的體積;
(2)求平面ACDE與平面BFG所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在圓內接四邊形ABCD中,AD為圓的直徑,對角線AC與BD交于點Q,AB,DC的延長線交于點P,連接PQ并延長交AD于點E,連接EB.
(1)求證:PE⊥AD;
(2)求證:BD平分∠EBC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在等比數(shù)列{an}中,a1=2,a3,a2+a4,a5成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1+$\frac{_{2}}{2}$+…+$\frac{_{n}}{n}$=an(n∈N*),{bn}的前n項和為Sn,求使Sn-nan+6≥0成立的正整數(shù)n的最大值.

查看答案和解析>>

同步練習冊答案