A. | -5 | B. | 3 | C. | 5 | D. | 7 |
分析 作出不等式組對應的平面區(qū)域,求出交點坐標,根據(jù)面積公式先求出a的值,利用z的幾何意義,結(jié)合數(shù)形結(jié)合即可得到結(jié)論.
解答 解:作出不等式組對應的平面區(qū)域如圖:
由$\left\{\begin{array}{l}{y=2}\\{x+y=1}\end{array}\right.$得$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$,即B(-1,2),
若x-y=a過B,則a=-1-2=-3,此時直線方程為y=x+3
∵Ω表示的區(qū)域面積為4,
∴直線x-y=a,即y=x-a的截距-a<3.即a>-3,
由$\left\{\begin{array}{l}{y=2}\\{x-y=a}\end{array}\right.$得$\left\{\begin{array}{l}{x=2+a}\\{2}\end{array}\right.$,即A(2+a,2),
由$\left\{\begin{array}{l}{x+y=1}\\{x-y=a}\end{array}\right.$,得$\left\{\begin{array}{l}{x=\frac{1+a}{2}}\\{y=\frac{1-a}{2}}\end{array}\right.$,即C($\frac{1+a}{2}$,$\frac{1-a}{2}$),
則△ABC的面積S=$\frac{1}{2}$(2+a+1)•(2-$\frac{1-a}{2}$)=$\frac{1}{2}$(a+3)•$\frac{a+3}{2}$=4,
即(a+3)2=16,得a+3=4或a+3=-4,即a=1或a=-7(舍),
則直線為x-y=1,
由z=3x-y得y=3x-z,
平移直線y=3x-z由圖象可知當直線y=3x-z經(jīng)過點A(3,2)時,直線y=3x-z的截距最小,
此時z最大為z=3×3-2=7,
故選:D.
點評 本題主要考查線性規(guī)劃的應用,根據(jù)三角形的面積,求出a的值,然后利用z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2<x<2} | B. | {x|1≤x≤2} | C. | {x|-2<x≤1} | D. | {x|-2≤x<1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 16 | B. | 12 | C. | 8 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12種 | B. | 14種 | C. | 16種 | D. | 18種 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\frac{2}{3}$,$\frac{1}{2}$] | B. | [-$\frac{2}{3}$,+∞) | C. | [-∞,$\frac{1}{2}$] | D. | [0,$\frac{1}{2}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com