已知三棱錐P-ABC中,PA⊥面ABC,底面ABC是邊長(zhǎng)為2的正三角形,PA=4.則三棱錐P-ABC的外接球表面積為
 
考點(diǎn):球的體積和表面積,球內(nèi)接多面體
專題:空間位置關(guān)系與距離
分析:由已知結(jié)合三棱錐和正三棱柱的幾何特征,可得此三棱錐外接球,即為以△ABC為底面以PA為高的正三棱柱的外接球,分別求出棱錐底面半徑r,和球心距d,代入R=
r2+d2
,可得球的半徑R
解答: 解:根據(jù)已知中底面△ABC是邊長(zhǎng)為2的正三角形,PA⊥底面ABC,
可得此三棱錐外接球,即為以△ABC為底面以PA為高的正三棱柱的外接球,
∵△ABC是邊長(zhǎng)為2的正三角形,
∴△ABC的外接圓半徑r=
2
3
3
,
∴球心到△ABC的外接圓圓心的距離d=2,故球的半徑R=
r2+d2
=
4
3
3

故三棱錐P-ABC外接球的表面積S=4πR2=
64
3
π
故答案為:
64
3
π
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是球內(nèi)接多面體,由題意明確三棱錐外接球是以△ABC為底面以PA為高的正三棱柱的外接球,利用半徑公式R=
r2+d2
,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=x(|x|-2)在區(qū)間[-2,m]上的最大值為1,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)(x∈R)滿足|f(x)+(
1-x2
1+x2
2|≤
1
3
,且|f(x)-(
2x
1+x2
2|≤
2
3
.則f(0)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a≠b,cos2
A
2
-cos2
B
2
=sin
A
2
cos
A
2
-sin
B
2
cos
B
2

(1)求∠C的大;
(2)若c=4,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
16
-
y2
20
=1上一點(diǎn)P到左焦點(diǎn)F1的距離為9,則P到右焦點(diǎn)F2的距離是( 。
A、1B、17
C、1或17D、23或41

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
4
x2+cosx,f′(x)為f(x)的導(dǎo)函數(shù),則f′(x)的圖象是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程
x2
k-3
+
y2
2-k
=1
表示焦點(diǎn)在y軸的雙曲線,則k的取值范圍是( 。
A、k<3B、k<2
C、2<k<3D、k>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(x+z,3),
b
=(2,y-z),且
a
b
.若x,y滿足不等式|x|+|y|≤1,則z的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C的方程為
x2
a2
-
y2
b2
=1(a,b>0),其離心率為e,直線l與雙曲線C交于A、B兩點(diǎn),線段AB中點(diǎn)M在第一象限,并且在拋物線y2=2px(p>0)上,且M到拋物線焦點(diǎn)距離為p,則直線l的斜率為(  )
A、
e2-1
2
B、e 2-1
C、
e2+1
2
D、e 2+1

查看答案和解析>>

同步練習(xí)冊(cè)答案