精英家教網 > 高中數學 > 題目詳情
拋物線y2=-4x的準線方程是( 。
A.y=1B.y=-1C.x=1D.x=-1
拋物線y2=-4x的開口向左,且2p=4,∴
p
2
=1

∴拋物線y2=-4x的準線方程是x=1
故選C.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知拋物線C的頂點在原點,焦點為F(0,1).
(Ⅰ)求拋物線C的方程;
(Ⅱ)在拋物線C上是否存在點P,使得過點P的直線交C于另一點Q,滿足PF⊥QF,且PQ與C在點P處的切線垂直?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

準線為y=-2的拋物線的標準方程為(  )
A.x2=4yB.x2=-4yC.x2=8yD.x2=-8y

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線C:y2=-2px(p>0)上橫坐標為-3的一點到準線的距離為4.
(1)求p的值;
(2)設動直線y=x+b與拋物線C相交于A、B兩點,問在直線l:y=2上是否存在與b的取值無關的定點M,使得∠AMB被直線l平分?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

拋物線y=4x2的焦點坐標是( 。
A.(1,0)B.(0,1)C.(
1
16
,0
D.(0,
1
16

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

M是拋物線y2=4x上的一點,F(xiàn)是拋物線的焦點,以Fx為始邊,F(xiàn)M為終邊的∠xFM=60°,則|FM|=______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知點P是拋物線y2=16x上的一點,它到對稱軸的距離為12,F(xiàn)是拋物線的焦點,則|PF|=______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知直線l1:4x-3y+8=0和直線l2:x=-1,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值是( 。
A.
12
5
B.3C.2D.
37
16

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

曲線C是平面內與定點F(2,0)和定直線x=-2的距離的積等于4的點的軌跡.給出下列四個結論:
①曲線C過坐標原點;
②曲線C關于x軸對稱;
③曲線C與y軸有3個交點;
④若點M在曲線C上,則|MF|的最小值為2(
2
-1)

其中,所有正確結論的序號是______.

查看答案和解析>>

同步練習冊答案