在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿(mǎn)足(2c-b)cosA=acosB.
(Ⅰ)求角A的大;
(Ⅱ)若a=4,求△ABC的面積的最大值.
考點(diǎn):余弦定理,正弦定理
專(zhuān)題:解三角形
分析:(1)由正弦定理和三角函數(shù)公式可得cosA=
1
2
,可得A=
π
3
;
(2)由余弦定理結(jié)合基本不等式可得16=b2+c2-bc≥2bdc-bc,可得bc的最大值為16,進(jìn)而可得△ABC的面積的最大值.
解答: 解:(1)∵(2c-b)cosA=acosB,
∴由正弦定理可得(2sinA-sinB)cosA=sinAcosB,
變形可得2sinCcosA=sinBcosA+sinAcosB=sin(A+B)=sinC,
∵C為三角形的內(nèi)角,sinC≠0,∴cosA=
1
2
,A=
π
3

(2)由余弦定理可得a2=b2+c2-2bccosA,
代入數(shù)據(jù)可得16=b2+c2-bc≥2bdc-bc,∴bc≤16
當(dāng)且僅當(dāng)b=c時(shí)取等號(hào),
∴△ABC的面積S=
1
2
bcsinA=
3
4
bc≤4
3
,
當(dāng)且僅當(dāng)b=c時(shí)取等號(hào),
∴△ABC的面積的最大值為4
3
點(diǎn)評(píng):本題考查正余弦定理,涉及基本不等式求最值,屬比較基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)閧x|x≠0},f(x)>0.滿(mǎn)足f(x•y)=f(x)•f(y),且在區(qū)間(0,+∞)上單調(diào)遞增,若實(shí)數(shù)a滿(mǎn)足f(log2a)+f(log 
1
2
a)≤2f(1),則a的取值范圍是( 。
A、[1,2]
B、(0,
1
2
]
C、[
1
2
,1
﹚∪(1,2]
D、(0,1)∪(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知ax2-2x>ax+4(a>0且a≠1),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
a
1
6
-b
1
6
a
1
2
-a3b
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某縣職工運(yùn)動(dòng)會(huì)將在本縣一中運(yùn)動(dòng)場(chǎng)隆重召開(kāi),為了搞好接待工作,執(zhí)委會(huì)在一中招募了12名男性志愿者和18名女性志愿者,調(diào)查發(fā)現(xiàn),這30名志愿者的身高如圖:(單位:cm)
若身高在175cm以上(包括175cm)定義為“高個(gè)子”,身高在175cm以下(不包括我,175cm)定義為“非高個(gè)子”,且只有“女高個(gè)子”才能擔(dān)任“禮儀小姐”
(1)應(yīng)用你所學(xué)的獨(dú)立性檢驗(yàn)的知識(shí)判斷是否有95%的把握認(rèn)為“高個(gè)子”于性別有關(guān).
參考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥ke0.100.050.010.005
ke2.7063.8416.6357.879
(2)用分層抽樣的方法從“高個(gè)子”中共抽取6人,若從這6個(gè)人中選2人,則他們至少有一人能擔(dān)任禮儀小姐的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義在R上的奇函數(shù),當(dāng)x∈(0,1)時(shí),f(x)=
2x
4x+1

(1)求f(x)在(-1,0)上的解析式
(2)證明:f(x)在(0,1)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x=3是函數(shù)f(x)=alnx+x2-10x的一個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三內(nèi)角A,B,C所對(duì)邊的長(zhǎng)依次為a,b,c,若cosA=
3
4
,cosC=
1
8

(Ⅰ)求cos B的值;    
(Ⅱ)若|
AC
+
BC
|=
46
,求BC邊上中線(xiàn)的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)镽,f(-2)=2013,對(duì)任意x∈R都有f′(x)<2x成立,則不等式f(x)<x2+2009的解集是(  )
A、(-2,2)
B、(-2,+∞)
C、(-∞,-2)
D、(-∞,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案