A. | 2 | B. | 3 | C. | 2$\sqrt{2}$ | D. | 2.5 |
分析 令t=$\sqrt{{x}^{2}+4}$(t≥2),則y=t+$\frac{1}{t}$在[2,+∞)上單調(diào)遞增,即可求出結(jié)論.
解答 解:令t=$\sqrt{{x}^{2}+4}$(t≥2),則y=t+$\frac{1}{t}$在[2,+∞)上單調(diào)遞增,
∴t=2,即x=0,函數(shù)f(x)=$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$(x∈R)的最小值為2.5,
故選D.
點(diǎn)評 本題考查函數(shù)的最值,考查換元法的運(yùn)用,要注意函數(shù)單調(diào)性的運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\root{3}{2}$ | B. | $-\frac{1}{2}$ | C. | -2 | D. | $-\root{3}{0.5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=1-x | B. | y=-|x| | C. | $y=\frac{1}{x-1}$ | D. | $y={x^{\frac{1}{2}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com