南山中學(xué)高二某班50名學(xué)生在一次百米測試中,成績?nèi)慷冀橛?3秒到18秒之間,將測試結(jié)果按如下方式分成五組,第一組[13,14),第二組[14,15)…,第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(1)請根據(jù)頻率分布直方圖估計該組數(shù)據(jù)的眾數(shù)和中位數(shù)(精確到0.01);
(2)從成績介于[13,14)和(17,18]兩組的人中任取2人,求兩人分別來自不同組的概率.
考點:列舉法計算基本事件數(shù)及事件發(fā)生的概率,頻率分布直方圖
專題:概率與統(tǒng)計
分析:(1)由頻率分布直方圖能求出眾數(shù)落在第三組[15,16)內(nèi),由此能求出眾數(shù);數(shù)據(jù)落在第一、二組的頻率是0.22<0.5,數(shù)據(jù)落在第一、二、三組的頻率是0.6>0.5,所以中位數(shù)一定落在第三組中,假設(shè)中位數(shù)是x,則0.22+(x-15)×0.38=0.5,由此能求出中位數(shù)
(2)成績在[13,14)的人數(shù)有2人,成績在[17,18)的人數(shù)有3人,由此能求出結(jié)果.
解答: 解.解:(1)由圖可知眾數(shù)落在第三組[15,16)內(nèi)是
1
2
(15+16)=15.50
因為數(shù)據(jù)落在第一、二組的頻率數(shù)據(jù)落在第一、二組的頻率=1×0.04+1×0.18=0.22<0.5,
∵數(shù)據(jù)落在第一、二組的頻率=1×0.04+1×0.18=0.22<0.5,
數(shù)據(jù)落在第一、二、三組的頻率=1×0.04+1×0.18+1×0.38=0.6>0.5,
∴中位數(shù)一定落在第三組中,
假設(shè)中位數(shù)是x,則0.22+(x-15)×0.38=0.5,
解得中位數(shù)x=
299
19
≈15.74
(2)由題意,[13,14)組有2人,(17,18]組有3人;
設(shè)[13,14)組中2人分別為A,B;(17,18)組中3人分別為X,Y,Z,事件A為抽取的兩人來自不同組,則基本事件有:(AB),(AX),(AY),(AZ),(BX),(BY),(BZ),(XY),(XZ),(YZ)共10種;
事件A包含基本事件有(AX),(AY),(AZ),(BX),(BY),(BZ)共6種
所以P(A)=0.6
點評:本題考查眾數(shù)、中位數(shù)的求法,考查概率的計算,是中檔題,解題時要認真審題,注意頻率分布直方圖的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有20位同學(xué),編號從1-20,現(xiàn)在從中抽取4人的作文卷進行調(diào)查,用系統(tǒng)抽樣方法確定所抽的編號為( 。
A、5,10,15,20
B、2,6,10,14
C、2,4,6,8
D、5,8,11,14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:(lg5)2+lg2×lg5+lg2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求f(x)=sin2x+2
3
sinx的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
(1)cos(90°+α)+sin(180°-α)-sin(180°+α)-sin(-α).
(2)
sin(π-α)
tan(π+α)
cot(
π
2
-α)
tan(
π
2
+α)
cos(-α)
sin(2π-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos3x,sin3x),
b
=(cosx,-sinx),且x∈[0,
π
4
],求f(x)=λ
a
b
-λ|
a
+
b
|•sin2x(λ≠0)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的焦距為4,且經(jīng)過點(-3,2
6
).
(Ⅰ)求雙曲線C的方程和其漸近線方程;
(Ⅱ)若直線l:y=kx+2與雙曲線C有且只有一個公共點,求所有滿足條件的k的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:2|x-3|+|x-4|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是拋物線y2=4x上的一個動點,Q是圓(x-3)2+(y-1)2=1上的一個動點,N(1,0)是一個定點,則|PQ|+|PN|的最小值為( 。
A、3
B、4
C、5
D、
2
+1

查看答案和解析>>

同步練習(xí)冊答案