3.已知函數(shù)f(x)=ax2+bx-lnx(a>0,b∈R),若對(duì)任意x>0,f(x)≥f(1),則( 。
A.lna<-2bB.lna≤-2bC.lna>-2bD.lna≥-2b

分析 由f(x)≥f(1),知x=1是函數(shù)f(x)的極值點(diǎn),所以f′(1)=0,從而得到b=1-2a,-2b=-(2-4a),作差:lna-(-2b)=lna+2-4a,所以構(gòu)造函數(shù)g(x)=lnx+2-4x,通過(guò)導(dǎo)數(shù)可求得g(x)≤g($\frac{1}{4}$)<0,即g(x)<0,所以g(a)<0,所以lna<-(2-4a)=-2b,即lna<-2b.

解答 解:f′(x)=2ax+b-$\frac{1}{x}$,
由題意可知,f(x)在x=1處取得最小值,即x=1是f(x)的極值點(diǎn);
∴f′(1)=0,∴2a+b=1,即b=1-2a;
令g(x)=2-4x+lnx(x>0),則g′(x)=$\frac{1-4x}{x}$;
∴當(dāng)0<x<$\frac{1}{4}$時(shí),g′(x)>0,g(x)在(0,$\frac{1}{4}$)上單調(diào)遞增;
當(dāng)x>$\frac{1}{4}$時(shí),g′(x)<0,g(x)在($\frac{1}{4}$,+∞)上單調(diào)遞減;
∴g(x)≤g($\frac{1}{4}$)=1+ln$\frac{1}{4}$=1-ln4<0;
∴g(a)<0,即2-4a+lna=2b+lna<0;
故lna<-2b,
故選:A.

點(diǎn)評(píng) 考查最值的概念,極值的定義,函數(shù)導(dǎo)數(shù)符號(hào)和函數(shù)單調(diào)性的關(guān)系,通過(guò)構(gòu)造函數(shù)比較兩個(gè)式子大小的方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知直線l過(guò)橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦點(diǎn)F,與橢圓相交于A,B兩點(diǎn),且滿(mǎn)足$\frac{|AF|}{|BF|}$=2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為$\frac{2π}{3}$,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=2$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,則$\overrightarrow$在$\overrightarrow{a}$方向上的投影為( 。
A.-$\frac{3\sqrt{3}}{2}$B.-$\frac{2\sqrt{3}}{2}$C.$\frac{2\sqrt{3}}{2}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)定義在(0,+∞)上的單調(diào)函數(shù)f(x)對(duì)任意的x∈(0,+∞)都有f(f(x)-log3x)=4,則不等式f(a2+2a)>4的解集為(  )
A.{a|a<-3或a>1}B.{a|a>1}C.{a|-3<x<1}D.{a|a<-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若不等式組$\left\{\begin{array}{l}x+y-2≤0\\ x+2y-2≥0\\ x-y+2m≥0\end{array}\right.$表示的平面區(qū)域?yàn)槿切,且其面積等于$\frac{4}{3}$,則m的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.經(jīng)濟(jì)學(xué)家在研究供求關(guān)系時(shí),一般用縱軸表示產(chǎn)品價(jià)格(自變量),而用橫軸來(lái)表示產(chǎn)品數(shù)量(因變量).某類(lèi)產(chǎn)品的市場(chǎng)供求關(guān)系在不受外界因素(如政府限制最高價(jià)格等)的影響下,市場(chǎng)會(huì)自發(fā)調(diào)解供求關(guān)系:當(dāng)產(chǎn)品價(jià)格P1低于均衡價(jià)格P0時(shí),需求量大于供應(yīng)量,價(jià)格會(huì)上升為P2;當(dāng)產(chǎn)品價(jià)格P2高于均衡價(jià)格P0時(shí),供應(yīng)量大于需求量,價(jià)格又會(huì)下降,價(jià)格如此波動(dòng)下去,產(chǎn)品價(jià)格將會(huì)逐漸靠進(jìn)均衡價(jià)格P0.能正確表示上述供求關(guān)系的圖形是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知M為△ABC所在平面內(nèi)的一點(diǎn),且$\overrightarrow{AM}=\frac{1}{4}\overrightarrow{AB}+n\overrightarrow{AC}$.若點(diǎn)M在△ABC的內(nèi)部(不含邊界),則實(shí)數(shù)n的取值范圍是(0,$\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖,矩形ABCD中,AB=3,AD=4,M、N分別為線段BC、CD上的點(diǎn),且滿(mǎn)足$\frac{1}{C{M}^{2}}$$+\frac{1}{C{N}^{2}}$=1,若$\overrightarrow{AC}$=x$\overrightarrow{AM}$+y$\overrightarrow{AN}$,則x+y的最小值為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=x2+ax+3.
(1)當(dāng)x∈R時(shí),f(x)≥a恒成立,求a的取值范圍;
(2)當(dāng)x∈[-2,2]時(shí),f(x)≥a恒成立,求a的取值范囤;
(3)設(shè)不等式f(x)≥a對(duì)于滿(mǎn)足1≤a≤3的一切a的取值都成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案