17.若α,β∈(0,$\frac{π}{2}$),sin($\frac{α}{2}-β$)=-$\frac{1}{2}$,cos($α-\frac{β}{2}$)=$\frac{{\sqrt{3}}}{2}$,則α+β=$\frac{2π}{3}$.

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求sin($α-\frac{β}{2}$),cos($\frac{α}{2}$-β)的值,進(jìn)而利用兩角差的余弦函數(shù)公式可求cos($\frac{α}{2}$+$\frac{β}{2}$)的值,再根據(jù)二倍角的余弦函數(shù)公式可求cos(α+β)的值,結(jié)合范圍α+β∈(0,π),即可得解.

解答 解:∵α,β∈(0,$\frac{π}{2}$),cos($α-\frac{β}{2}$)=$\frac{{\sqrt{3}}}{2}$,
∴$α-\frac{β}{2}$∈(-$\frac{π}{4}$,$\frac{π}{2}$),可得:sin($α-\frac{β}{2}$)=±$\frac{1}{2}$,
∵α,β∈(0,$\frac{π}{2}$),sin($\frac{α}{2}$-β)=-$\frac{1}{2}$,
∴$\frac{α}{2}$-β∈(-$\frac{π}{2}$,$\frac{π}{4}$),可得:cos($\frac{α}{2}$-β)=$\frac{\sqrt{3}}{2}$,
∴cos[(α-$\frac{β}{2}$)-($\frac{α}{2}$-β)]=cos(α-$\frac{β}{2}$)cos($\frac{α}{2}$-β)+sin(α-$\frac{β}{2}$)sin($\frac{α}{2}$-β)=$\frac{3}{4}$±$\frac{1}{4}$=$\frac{1}{2}$,或1.
即cos($\frac{α}{2}$+$\frac{β}{2}$)=$\frac{1}{2}$,或1,
∴cos(α+β)=cos[2($\frac{α}{2}$+$\frac{β}{2}$)]=2 cos2($\frac{α}{2}$+$\frac{β}{2}$)-1=-$\frac{1}{2}$,或1.
∵α+β∈(0,π),
∴可得:α+β=$\frac{2π}{3}$.
故答案為:$\frac{2π}{3}$.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的余弦函數(shù)公式,二倍角的余弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,解題時(shí)要注意角的范圍,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在三棱柱ABC-A1B1C1中,側(cè)面AA1C1C底面ABC,AA1=A1C=AC=AB=BC=2,且點(diǎn)O為AC中點(diǎn).
(Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求二面角A1-AB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.為了判定兩個(gè)分類變量X和Y是否有關(guān)系,應(yīng)用獨(dú)立性檢驗(yàn)法算得K2的觀測(cè)值為6,駙臨界值表如下:
 P(K2≥k0 0.050.01 0.005  0.001
 k0 3.841 6.6357.879  10.828
則下列說(shuō)法正確的是( 。
A.有95%的把握認(rèn)為“X和Y有關(guān)系”B.有99%的把握認(rèn)為“X和Y有關(guān)系”
C.有99.5%的把握認(rèn)為“X和Y有關(guān)系”D.有99.9%的把握認(rèn)為
“X和Y有關(guān)系”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知等差數(shù)列{an}中,a2=-1,a6=7.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=($\frac{1}{2}$)nan,數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.定義在R上的函數(shù)y=f(x)對(duì)任意的x、y∈R,滿足條件:f(x+y)=f(x)+f(y)-1,且當(dāng)x>0時(shí),f(x)>1.
(1)求f(0)的值;
(2)證明:函數(shù)f(x)是R上的單調(diào)增函數(shù);
(3)解關(guān)于t的不等式f(2t2-t)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=a-$\frac{2}{{2}^{x}+1}$.
(1)求證:不論a為何實(shí)數(shù),f(x)一定為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù),并求此時(shí)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足an=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$(n≥2)
(1)求證:$\left\{{\sqrt{S_n}\left.{\;}\right\}}$為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式.
(2)是否存在實(shí)數(shù)λ,使得數(shù)列$\left\{{\frac{S_n}{{λ+{a_n}}}}\right\}$成等差數(shù)列?若存在,求出λ的值和該數(shù)列前n項(xiàng)的和;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}=2{n^2}+n$,n∈N*,在數(shù)列{bn}中,b1=1,bn+1=2bn+3,n∈N*
(1)求證:{bn+3}是等比數(shù)列;
(2)若cn=log2(bn+3),求數(shù)列$\{\frac{1}{{{c_n}{c_{n+1}}}}\}$的前n項(xiàng)和Rn;
(3)求數(shù)列{anbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.關(guān)于x的方程x3-ax+2=0有三個(gè)不同實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是( 。
A.(2,+∞)B.(3,+∞)C.(0,3 )D.(-∞,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案