【題目】將半徑都為1的4個鋼球完全裝入形狀為正四面體的容器里,這個正四面體的高的最小值為( )
A.
B.2+
C.4+
D.
【答案】C
【解析】解:由題意知,底面放三個鋼球,上再落一個鋼球時體積最。 于是把鋼球的球心連接,則又可得到一個棱長為2的小正四面體,則不難求出這個小正四面體的高為 ,
且由正四面體的性質可知:正四面體的中心到底面的距離是高的 ,且小正四面體的中心和正四面體容器的中心應該是重合的,
∴小正四面體的中心到底面的距離是 × = ,正四面體的中心到底面的距離是 +1 (1即小鋼球的半徑),
所以可知正四棱錐的高的最小值為 ( +1)×4=4+ ,
故選 C.
【考點精析】掌握棱錐的結構特征是解答本題的根本,需要知道側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2﹣4x﹣4y+4=0,點E(3,4).
(1)過點E的直線l與圓交與A,B兩點,若AB=2 ,求直線l的方程;
(2)從圓C外一點P(x1 , y1)向該圓引一條切線,切點記為M,O為坐標原點,且滿足PM=PO,求使得PM取得最小值時點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,有一壁畫,最高點A處離地面AO=4m,最低點B處離地面BO=2m,觀賞它的C點在過墻角O點與地面成30°角的射線上.
(1)設點C到墻的距離為x,當x= m時,求tanθ的值;
(2)問C點離墻多遠時,視角θ最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,且CD=2,AB=BC=PA=1,PD= .
(1)求三棱錐A﹣PCD的體積;
(2)問:棱PB上是否存在點E,使得PD∥平面ACE?若存在,求出 的值,并加以證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,點M是平面A1B1C1D1內一點,且BM∥平面ACD1 , 則tan∠DMD1的最大值為( )
A.
B.1
C.2
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一個幾何體的三視圖如圖所示.
(1)求此幾何體的表面積;
(2)在如圖的正視圖中,如果點A為所在線段中點,點B為頂點,求在幾何體側面上從點A到點B的最短路徑的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若正項數列{an}滿足: =an+1﹣an(a∈N*),則稱此數列為“比差等數列”.
(1)請寫出一個“比差等數列”的前3項的值;
(2)設數列{an}是一個“比差等數列”
(i)求證:a2≥4;
(ii)記數列{an}的前n項和為Sn , 求證:對于任意n∈N*,都有Sn> .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱錐A﹣BCD的各個棱長都相等,E,F分別是棱AB,CD的中點,則EF與BC所成的角是( )
A.90°
B.60°
C.45°
D.30°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com