【題目】已知 ,設(shè).

(1)求函數(shù)的最小正周期;

(2)由的圖象經(jīng)過怎樣變換得到的圖象?試寫出變換過程;

(3)當時,求函數(shù)的最大值及最小值.

【答案】(1);(2)見解析;(3)有最大值,最小值.

【解析】試題分析:(1)利用向量的數(shù)量積的坐標運算可求得,,于是可求函數(shù)f(x)的最小正周期;
(2)利用三角函數(shù)的圖象變換,即可寫出變換過程;
(3)當,故,利用正弦函數(shù)的單調(diào)性及可求得答案.

試題解析:

(1)解:∵

的最小正周期.

(2)把的圖象上所有點向左平移個單位得到的圖象;再把的圖象上所有點的橫坐標縮短到原來的,縱坐標不變得到的圖象;再把的圖象上所有點的縱坐標伸長到原來的倍,橫坐標不變得到.

(3)∵,∴.

∴當,即時, 有最大值

,即時, 有最小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列的各項均為正數(shù),且 .

(1)求數(shù)列的通項公式;

(2)若數(shù)列滿足: ,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.

1)求橢圓的標準方程;

2)已知點,和平面內(nèi)一點,過點任作直線與橢圓相交于兩點,設(shè)直線的斜率分別為,,試求滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】商場進行有促銷活動,顧客購物每滿500元,可選擇返回50元現(xiàn)金或參加一次獎,抽獎規(guī)則如下:從1個裝有6個白球、4個紅球的子中任摸一球,摸到球就可獲得100元現(xiàn)金獎勵,假設(shè)顧客抽獎的結(jié)果相互獨立.

顧客選擇參加一次抽獎,求他獲得100元現(xiàn)金獎勵的概率;

顧客已購物1500元,作為商場經(jīng)理希望顧客直接選擇返回150元現(xiàn)金,是選擇參加3次抽獎?說明理由;

顧客參加10次抽獎,則最有可能獲得多少現(xiàn)金獎勵

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商店為了更好地規(guī)劃某種商品進貨的量,該商店從某一年的銷售數(shù)據(jù)中,隨機抽取了組數(shù)據(jù)作為研究對象,如下圖所示((噸)為該商品進貨量, (天)為銷售天數(shù)):

(Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點圖:

(Ⅱ)根據(jù)上表提供的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(Ⅲ)根據(jù)(Ⅱ)中的計算結(jié)果,若該商店準備一次性進貨該商品噸,預(yù)測需要銷售天數(shù);

參考公式和數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是兩條不同的直線, 是三個不同的平面,給出下列四個命題:

①若,則 ②若,則

③若,則 ④若,則

其中正確命題的序號是( )

A. ①和② B. ②和③ C. ③和④ D. ①和④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,平面側(cè)面,且

(1)求證:

(2)若直線與平面所成角的大小為,求銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足:

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若存在,使得 成等差數(shù)列,試判斷:對于任意的,且是否成等差數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,(其中).

(1)求;

(2)試比較的大小,并用數(shù)學歸納法給出證明過程.

查看答案和解析>>

同步練習冊答案