【題目】已知二次函數(shù)滿足,且.
(1)求的解析式;
(2)設(shè)函數(shù),當(dāng)時,求的最小值;
(3)設(shè)函數(shù),若對任意,總存在,使得成立,求m的取值范圍.
【答案】(1);(2);(3)
【解析】
(1) 根據(jù)二次函數(shù),則可設(shè),再根據(jù)題中所給的條件列出對
應(yīng)的等式對比得出所求的系數(shù)即可.
(2)根據(jù)(1)中所求的求得,再分析對稱軸與區(qū)間的位置關(guān)系進(jìn)行分類討論求解的最小值即可.
(3)根據(jù)題意可知需求與在區(qū)間上的最小值.再根據(jù)對數(shù)函數(shù)與二次函數(shù)的單調(diào)性求解最小值即可.
(1)設(shè).
①∵,∴,
又∵,
∴,可得,
∴解得即.
(2)由題意知,,,對稱軸為.
①當(dāng),即時,函數(shù)h(x)在上單調(diào)遞增,
即;
②當(dāng),即時,函數(shù)h(x)在上單調(diào)遞減,在上單調(diào)遞增,
即.
綜上,
(3)由題意可知,
∵函數(shù)在上單調(diào)遞增,故最小值為,
函數(shù)在上單調(diào)遞減,故最小值為,
∴,解得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】扎花燈是中國一門傳統(tǒng)手藝,逢年過節(jié)時常常在大街小巷看到各式各樣的美麗花燈,F(xiàn)有一個花燈,它外圍輪廓是由兩個形狀完全相同的拋物線繞著它們自身的對稱軸旋轉(zhuǎn)而來(如圖),花燈的下頂點為,上頂點為,米,在它的內(nèi)部放有一個半徑為米的球形燈泡,球心在軸上,且米。若球形燈泡的球心到四周輪廓上的點的最近距離是在下頂點處取到。建立適當(dāng)?shù)淖鴺?biāo)系可得拋物線方程為,則實數(shù)的取值范圍是_______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)擬用10萬元投資甲、乙兩種商品.已知各投入萬元,甲、乙兩種商品分別可獲得萬元的利潤,利潤曲線,,如圖所示.
(1)求函數(shù)的解析式;
(2)應(yīng)怎樣分配投資資金,才能使投資獲得的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=+xlnx,g(x)=x3﹣x2﹣3.
(1)討論函數(shù)h(x)=的單調(diào)性;
(2)如果對任意的s,t∈[,2],都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)證明:函數(shù)在區(qū)間存在唯一的極小值點,且;
(2)證明:函數(shù)于有且僅有兩個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,點也為拋物線的焦點.(1)若為橢圓上兩點,且線段的中點為,求直線的斜率;
(2)若過橢圓的右焦點作兩條互相垂直的直線分別交橢圓于和,設(shè)線段的長分別為,證明是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣的方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
性別 是否需要志愿者 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
附:的觀測值
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)在犯錯誤的概率不超過0.01的前提下是否可認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題,;命題q:函數(shù)有兩個零點.
(1)若為假命題,求實數(shù)的取值范圍;
(2)若為真命題,為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com