5.為了調(diào)查學(xué)生星期天晚上學(xué)習(xí)時(shí)間利用問題,某校從2015-2016學(xué)年高二年級(jí)1000名學(xué)生(其中走讀生450名,住宿生550名)中,采用分層抽樣的方法抽取n名學(xué)生進(jìn)行問卷調(diào)查,根據(jù)問卷取得了這n名同學(xué)每天晚上學(xué)習(xí)時(shí)間(單位:分鐘)的數(shù)據(jù),按照以下區(qū)間分為八組①[0,30),②[30,60),③[60,90),④[90,120),⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240),得到頻率分布直方圖如圖,已知抽取的學(xué)生中星期天晚上學(xué)習(xí)時(shí)間少于60分鐘的人數(shù)為5人.
(1)求n的值;
(2)如果“學(xué)生晚上學(xué)習(xí)時(shí)間達(dá)到兩小時(shí)”,則認(rèn)為其利用時(shí)間充分,否則,認(rèn)為利用時(shí)間不充分;對(duì)抽取的n名學(xué)生,完成下列2×2列聯(lián)表:
利用時(shí)間充分利用時(shí)間不充分合計(jì)
走讀生30  
住校生 10 
合計(jì)  
據(jù)此資料,是否有95%的把握認(rèn)為“學(xué)生利用時(shí)間是否充分”與“走讀、住!庇嘘P(guān)?
(3)若在第①組、第②組共抽出2人調(diào)查影響有效利用時(shí)間的原因,求抽出的2人中第①組、第②組各有1人的概率.

附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$

p(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.83

分析 (1)由分層抽樣及頻率分布直方圖的特點(diǎn)即可求得結(jié)果;
(2)由分布直方圖可完成表格,再將數(shù)據(jù)帶入給定的公式即可;
(3)先列出基本事件總數(shù)的情況,再挑出滿足條件的情況即可.

解答 解:(1)由圖可知:學(xué)習(xí)時(shí)間少于60分鐘的頻率為P1+P2=0.05,
由題意:n×0.05=5,∴n=100
(2)由頻率分布直方圖可知,在抽取的100人中,
“走讀生”有45人,利用時(shí)間不充分的有40人,
從而2×2列聯(lián)表如下:

利用時(shí)間充分利用時(shí)間不充分合計(jì)
走讀生301545
住校生451055
合計(jì)7525100
由2×2列聯(lián)表中的數(shù)據(jù)
k=$\frac{100×(30×10-45×15)^{2}}{75×25×45×55}$≈3.030,
因?yàn)?.030<3.841,
所以沒有95%的把握認(rèn)為學(xué)生“利用時(shí)間是否充分”與走讀、住宿有關(guān);
(3)記第①組2人為A1、A2,第②組的3人為B1、B2、B2,則“從5人中抽取2人”
所構(gòu)成的基本事件空間Ω=“A1A2、A1B1、A1B2、A1B3、A2B1、A2B2、A2B3、B1B2、B1B3、B2B3”,共10個(gè)基本事件;
記“抽取2人中第①組、第②組各有1人”記作事件A,
則事件A所包含的基本事件有:A1B1、A1B2、A1B3、A2B1、A2B2、A2B3共6個(gè)基本事件,
∴$P(A)=\frac{6}{10}=\frac{3}{5}$,即抽出的2人中第①組第②組各有1人的概率為$\frac{3}{5}$.

點(diǎn)評(píng) 本題考查了頻率分布直方圖的應(yīng)用問題,也考查了2×2列聯(lián)表的應(yīng)用問題,考查了概率的計(jì)算問題,考查了計(jì)算能力的應(yīng)用問題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如果實(shí)數(shù)x,y滿足關(guān)系$\left\{\begin{array}{l}x-y+1≥0\\ x+y-2≤0\\ x≥0\\ y≥0\end{array}\right.$,則$z=\frac{2x+y-7}{x-3}$的取值范圍為[-$\frac{9}{5}$,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i是虛數(shù)單位,則$\frac{{{i^{2015}}}}{1+i}$( 。
A.$\frac{1-i}{2}$B.$\frac{1+i}{2}$C.$\frac{-1-i}{2}$D.$\frac{-1+i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為平行四邊形,∠ABC+∠ADC=90°,E是線段AD的中點(diǎn),F(xiàn)在線段PD上運(yùn)動(dòng),記$\frac{PF}{PD}$=λ.
(1)若λ=$\frac{1}{2}$,證明:平面BEF⊥平面ABCD;
(2)若λ=$\frac{1}{3}$,PA=AB=AC=6,求三棱錐C-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x-sinx.若直線l與函數(shù)y=f(x)的圖象交于A(x1,y1),B(x2,y2)(x1<x2)兩點(diǎn),證明:直線l的斜率k>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(Ⅰ)已知y=$\frac{{1-{x^2}}}{e^x}$,求y′.
(Ⅱ)已知y=x2sin(3x+π),求y′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.有一盛滿水的圓柱形容器,內(nèi)壁底面半徑為5,高為2.將一個(gè)半徑為3的玻璃小球緩慢浸沒與水中.
(1)求圓柱體積;
(2)求溢出水的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.-$\frac{23}{12}$π弧度化為角度應(yīng)為-345°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)命題p:“方程x2+mx+1=0有兩個(gè)實(shí)數(shù)根”;命題q:“?x∈R,4x2+4(m-2)x+1≠0”,若p∧q為假,¬q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案