16.已知全集U={0,1,2,3,4,5},集合A={0,1,3},集合B={2,4},則(∁UA)∩(∁UB)=( 。
A.{0,5}B.{0,1,2,3,4,5}C.{0,1,2}D.{5}

分析 由已知直接利用交、并、補(bǔ)集的混合運(yùn)算得答案.

解答 解:全集U={0,1,2,3,4,5},集合A={0,1,3},集合B={2,4},
則(∁UA)={2,4,5},(∁UB)={0,1,3,5},
∴(∁UA)∩(∁UB)={5},
故選:D.

點(diǎn)評 本題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握交、并、補(bǔ)集的運(yùn)算是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=2+4x+$\frac{1}{x}$(x>0)的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)中,與y=x表示同一函數(shù)的是( 。
A.y=$\frac{|x|}{x}$B.y=${a^{{{log}_a}x}}$(a>0且a≠1)
C.y=$\sqrt{x^2}$D.y=logaax(a>0且a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.“a>0,b>0”是“$\frac{a}$+$\frac{a}$≥2”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{4+{2}^{1-x}}{1+{2}^{-x}}$(x∈R)
(1)用定義證明f(x)是增函數(shù);
(2)若g(x)=f(x)-a是奇函數(shù),求g(x)在(-∞,a]上的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{0.5}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,則f[f(2)]=(  )
A.$\sqrt{3}$B.$\frac{1}{3}$C.9D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x-1|+|x+1|(x∈R)
(1)畫出函數(shù)圖象,并寫出函數(shù)的值域;
(2)求使函數(shù)F(x)=f(x)-n有兩個(gè)不同的零點(diǎn)時(shí)的n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},
(1)若a=10,求A∩B;
(2)求能使A⊆B成立的a值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.雙曲線與橢圓4x2+y2=64有公共的焦點(diǎn),它們的離心率互為倒數(shù),求雙曲線方程.

查看答案和解析>>

同步練習(xí)冊答案