設(shè)函數(shù)f(x)=
1
2
-
1
2x+1
,求證:函數(shù)f(x)為奇函數(shù).
考點:函數(shù)奇偶性的判斷
專題:證明題,函數(shù)的性質(zhì)及應(yīng)用
分析:求出定義域R,再計算f(-x),注意化簡變形,再與f(x)比較,即可得到奇偶性.
解答: 證明:函數(shù)f(x)=
1
2
-
1
2x+1
的定義域為R,
f(-x)=
1
2
-
1
2-x+1
=
2-x-1
2(2-x+1)
=
1
2
1-2x
1+2x

=-
1
2
•(1-
2
2x+1
)=-f(x),
則f(x)為奇函數(shù).
點評:本題考查函數(shù)的奇偶性的判斷和證明,考查定義法證明,注意判斷定義域是否關(guān)于原點對稱,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列an=
1
n(n+1)
,其前n項之和為
9
10
,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A=
π
4
,cosB=
10
10
,則sinC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與向量
a
=(1,2,3),
b
=(3,1,2)都垂直的向量為( 。
A、(1,7,5)
B、(1,-7,5)
C、(-1,-7,5)
D、(1,-7,-5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=5x+3,則f(1)+f(2)+…+f(30)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線3x2-y2=12的中心為O,左右焦點分別為F1,F(xiàn)2,左頂點為A.
(1)求雙曲線的實軸長、虛軸長、離心率和漸近線方程;
(2)設(shè)過A平行于y軸的直線交雙曲線的兩條漸近線分別于B,C,求四邊形F1COB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)在區(qū)間(t,t+
1
2
)(t>0)上不是單調(diào)函數(shù),求實數(shù)t的取值范圍;
(III)如果當(dāng)x≥1時,不等式f(x)≥
a
x+1
恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程ax2-2x+a=0的一根在區(qū)間(0,1)上,另一根在區(qū)間(1,2)上,則實數(shù)a的范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯誤的個數(shù)是( 。
①若數(shù)列{an}的通項為{an}=
1
n(n+1)
,則它的前100項和S100=
99
100

②若數(shù)列{an}的前n項和為Sn,若a1=1,且當(dāng)n≥2時,恒有Sn=2an,則{an}是等比數(shù)列.
③如果定義在R上的偶函數(shù)f(x)有零點,則它的所有零點之和等于0.
④把函數(shù)y=sin(2x+
π
6
)的圖象向右平移
π
4
個長度單位,即可得到y(tǒng)=sin(2x-
π
3
)的圖象.
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊答案