1.現(xiàn)有兩組卡片,第一組卡片上分別寫有數(shù)字“2,3,4”,第二組卡片上分別寫有數(shù)字“3,4,5”,現(xiàn)從每組卡片中各隨機抽出一張,用抽取的第一組卡片上的數(shù)字減去抽取的第二組卡片上的數(shù)字,差為負數(shù)的概率為(  )
A.$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{2}{3}$

分析 列表得出所有等可能的情況數(shù),找出差為負數(shù)的情況數(shù),即可求出所求的概率.

解答 解:列表得:

 234
3(2,3)(3,3)(4,3)
4(2,4)(3,4)(4,4)
5(2,5)(3,5)(4,5)
所有等可能的情況有9種,其中差為負數(shù)的情況有6種,
則P=$\frac{6}{9}$=$\frac{2}{3}$.
故選:D.

點評 此題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.在空間直角坐標系中,點A(1,3,-2),B(-2,3,2),則A,B兩點間的距離為( 。
A.$\sqrt{14}$B.5C.$\sqrt{31}$D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如果長方體三面的面積分別是$\sqrt{2},\sqrt{3},\sqrt{6}$,那么它的外接球的半徑是( 。
A.$\sqrt{6}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{3}$D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(x,3),若$\overrightarrow{a}$與$\overrightarrow$共線,則|$\overrightarrow{a}$|=2;若$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow$|=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.對任意的向量$\overrightarrow a$,$\overrightarrow b$和實數(shù)x∈[0,1],如果滿足$|{\overrightarrow a}|=2|{\overrightarrow a-\overrightarrow b}|$,都有$|{\overrightarrow a-x\overrightarrow b}|≤λ|{\overrightarrow a-\overrightarrow b}|$成立,那么實數(shù)λ的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{ax+b}{x^2}$為奇函數(shù),且f(1)=1.
(Ⅰ)求實數(shù)a與b的值;
(Ⅱ)若函數(shù)g(x)=$\frac{1-f(x)}{x}$,設{an}為正項數(shù)列,且當n≥2時,[g(an)•g(an-1)+$\frac{{{a_n}+{a_{n-1}}-1}}{{{a_n}^2•{a_{n-1}}^2}}$]•an2=q,(其中q≥2016),{an}的前n項和為Sn,bn=$\sum_{i=1}^n{\frac{{{S_{i+1}}}}{S_i}}$,若bn≥2017n恒成立,求q的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年江西吉安一中高二上段考一數(shù)學(理)試卷(解析版) 題型:選擇題

下列四個命題中錯誤的個數(shù)是( )

①垂直于同一條直線的兩條直線相互平行;

②垂直于同一個平面的兩條直線相互平行;

③垂直于同一條直線的兩個平面相互平行;

④垂直于同一個平面的兩個平面相互平行.

A.1 B.2 C.3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設向量$\overrightarrow a$=(1,m),$\overrightarrow b$=(m,4),若$\overrightarrow a$∥$\overrightarrow b$,則實數(shù)m的值是( 。
A.2B.-2C.0D.-2或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn,且Sn=2an-1,n∈N+
(1)求數(shù)列{an}的通項公式;
(2)若bn=log2a2n,求數(shù)列{$\frac{1}{{{b_n}{b_{n+1}}}}$}的前n項和為Tn

查看答案和解析>>

同步練習冊答案