如果一條直線和平面內(nèi)的一條直線平行,那么直線和平面的關(guān)系是         .
平行或在面內(nèi) 

試題分析:根據(jù)線面平行的判定定理,由于一條直線和平面內(nèi)的一條直線平行,那么可知如果l在平面外,則直線與平面平行,如果l在平面內(nèi),也能滿足題意,故答案為平行或在面內(nèi)。
點(diǎn)評:確定線面的位置關(guān)系,關(guān)鍵是看直線是否在平面內(nèi),來確定結(jié)論,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是平面,是直線,給出下列命題,其中正確的命題的個(gè)數(shù)是(      )
( 1 )若,則
( 2 )若,則
( 3 )如果是異面直線,那么相交
( 4 )若,且,則.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
如圖,在棱長為3的正方體中,.

⑴求兩條異面直線所成角的余弦值;
⑵求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖,在四棱錐P—ABCD中,底面ABCD為直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分別為PC、PB的中點(diǎn).

(Ⅰ)求證:PB平面ADMN;
(Ⅱ)求四棱錐P-ADMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在三棱錐P-ABC中,PA⊥平面ABC,∠BAC=90°,D、E、F分別是棱AB、BC、CP的中點(diǎn),AB=AC=1,PA=2,則直線PA與平面DEF所成角的正弦值為(  )
A.              B.             C.             D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在如圖所示的四棱錐中,已知 PA⊥平面ABCD, ,
的中點(diǎn).

(1)求證:MC∥平面PAD
(2)求直線MC與平面PAC所成角的余弦值;
(3)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
如圖1,在等腰梯形中,,,上一點(diǎn), ,且.將梯形沿折成直二面角,如圖2所示.

(Ⅰ)求證:平面平面;
(Ⅱ)設(shè)點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,點(diǎn)所在平面內(nèi),且直線與平面所成的角為,試求出點(diǎn)到點(diǎn)的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若α、β是兩個(gè)不同的平面,m、n是兩條不同直線,則下列命題不正確的是
A.α∥β,m⊥α,則m⊥β
B.m∥n,m⊥α,則n⊥α
C. n∥α,n⊥β,則α⊥β
D.αβ=m,n與α、β所成的角相等,則m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖, 是邊長為的正方形,平面,,與平面所成角為.

(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點(diǎn),使得平面?若存在,試確定點(diǎn)的位置;若不存在,說明理由。

查看答案和解析>>

同步練習(xí)冊答案