如圖,已知矩形中,的中點(diǎn),沿將三角形折起,使.
(Ⅰ)求證:平面;
(Ⅱ)求直線與平面所成角的正弦值.
(Ⅰ)詳見解析;(Ⅱ).

試題分析:(Ⅰ)取中點(diǎn)H,先證明垂直于平面,進(jìn)而證明平面;(Ⅱ)建立直角坐標(biāo)系,構(gòu)造向量,平面的法向量,利用公式求解.
試題解析:(Ⅰ)∵在矩形中,的中點(diǎn),
為等腰直角三角形,
,即.                (1分)
中點(diǎn)H,連結(jié),則
中,,
中,,
               (2分)
                 (3分)
,                   (4分)
平面,                  (5分)
∴平面⊥平面.                 (6分)
(Ⅱ)解:分別以直線為x軸和y軸,O為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,

,,,.
 (7分)
設(shè)平面的一個法向量為

,
                       (9分)
設(shè)為直線與平面所成的角,
               (11分)
即直線與平面所成角的正弦值為        (12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,側(cè)面底面,,中點(diǎn),底面是直角梯形,,,

(1) 求證:平面;
(2) 求證:平面平面;
(3) 設(shè)為棱上一點(diǎn),,試確定的值使得二面角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,六棱錐的底面是邊長為1的正六邊形,底面。
(Ⅰ)求證:平面平面;
(Ⅱ)若直線PC與平面PDE所成角為,求三棱錐高的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,邊長為a的正方形ABCD中,點(diǎn)E、F分別在AB、BC上,且,將△AED、△CFD分別沿DE、DF折起,使A、C兩點(diǎn)重合于點(diǎn),連結(jié)A¢B.

(Ⅰ)判斷直線EF與A¢D的位置關(guān)系,并說明理由;
(Ⅱ)求二面角F-A¢B-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在直角梯形中,AD//BC, =900,BA="BC" 把ΔBAC沿折起到的位置,使得點(diǎn)在平面ADC上的正投影O恰好落在線段上,如圖2所示,點(diǎn)分別為線段PC,CD的中點(diǎn).

(I) 求證:平面OEF//平面APD;
(II)求直線CD與平面POF;
(III)在棱PC上是否存在一點(diǎn),使得到點(diǎn)P,O,C,F四點(diǎn)的距離相等?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,

(I)求證
(II)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知正方體的棱長為1,動點(diǎn)P在正方體表面上運(yùn)動,且,記點(diǎn)P的軌跡長度為,則             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC 中,∠C =90°,∠B =30°,AC=1,M 為 AB 中點(diǎn),將△ACM 沿 CM 折起,使 A、B 間的距離為 ,則 M 到面 ABC 的距離為(  )

(A)
(B)
(C)1
(D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形所在的平面與正方形所在的平面相垂直,、分別是、的中點(diǎn).

(1)求證:面
(2)求直線與平面所成的角正弦值.

查看答案和解析>>

同步練習(xí)冊答案