如圖,邊長為a的正方形ABCD中,點E、F分別在AB、BC上,且,將△AED、△CFD分別沿DE、DF折起,使A、C兩點重合于點,連結(jié)A¢B.

(Ⅰ)判斷直線EF與A¢D的位置關(guān)系,并說明理由;
(Ⅱ)求二面角F-A¢B-D的大。
(Ⅰ)異面垂直;(Ⅱ).

試題分析:(Ⅰ)先證明A¢D⊥面A¢EF即可得EF與A¢D的位置關(guān)系是異面垂直;
(Ⅱ)先作出并證明ÐOHF是二面角F-A¢B-D的平面角,再利用解三角形的方法求出ÐOHF的大小.
試題解析:(Ⅰ)A¢D⊥EF.       1分
證明如下:因為A¢D⊥A¢E,A¢D⊥A¢F,
所以A¢D⊥面A¢EF,又EFÌ面A¢EF,
所以A¢D⊥EF.直線EF與A¢D的位置關(guān)系是異面垂直    4分

(Ⅱ)方法一、設(shè)EF、BD相交于O,連結(jié)A¢O,作FH⊥A¢B于H,              
連結(jié)OH, 因為EF⊥BD,  EF⊥A¢D.
所以EF⊥面A¢BD,A¢BÌ面A¢BD, 所以A¢B⊥EF,又A¢B⊥FH,
故A¢B⊥面OFH,OHÌ面OFH,      所以A¢B⊥OH,
故ÐOHF是二面角F-A¢B-D的平面角.
,A¢E=A¢F=,EF=,則,
所以,△A¢EF是直角三角形,則,
,,∴,,
則A¢B=,所以,
所以, tanÐOHF=,故ÐOHF=
所以二面角F-A¢B-D的大小為.   12分
方法二、設(shè)EF、BD相交于O,連結(jié)A¢O,作于G,可得A¢G⊥面BEDF,
,A¢E=A¢F=,EF=,則,

所以,△A¢EF是直角三角形,則,
,則,
,
所以,,則,
分別以BF、BE為空間直角坐標(biāo)系的x、y軸,建立如圖坐標(biāo)系,則, ,,故,,,,
,故面A¢BD的一個法向量
設(shè)面A¢BF的一法向量為,則,
設(shè)二面角F-A¢B-D的平面角為,則,∴
故二面角F-A¢B-D的大小為. 12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,側(cè)面是等邊三角形,在底面等腰梯形中,,,的中點,的中點,.

(1)求證:平面平面;
(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形,滿足上,上,且,,,,沿、將矩形折起成為一個直三棱柱,使、重合后分別記為,在直三棱柱中,點分別為的中點.

(I)證明:∥平面;
(Ⅱ)若二面角為直二面角,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PA丄平面ABCD,==90°=1200,AD=AB=1,AC交BD于 O 點.
(I)求證:平面PBD丄平面PAC;
(Ⅱ)求三棱錐D-ABP和三棱錐B-PCD的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知矩形中,的中點,沿將三角形折起,使.
(Ⅰ)求證:平面
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=3,點E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF平面EFDC,設(shè)AD中點為P.
(Ⅰ)當(dāng)E為BC中點時,求證:CP∥平面ABEF;
(Ⅱ)設(shè)BE=x,當(dāng)x為何值時,三棱錐A-CDF的體積有最大值?并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,,,分別為的中點.

(Ⅰ)求證:;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果圓錐的側(cè)面展開圖是半圓,那么這個圓錐的頂角(經(jīng)過圓錐旋轉(zhuǎn)軸的截面中兩條母線的夾角)是             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在三棱錐PABC中,已知PC⊥平面ABC,點C在平面PBA內(nèi)的射影D在直線PB上.

(1)求證:AB⊥平面PBC;
(2)設(shè)AB=BC,直線PA與平面ABC所成的角為45°,求異面直線AP與BC所成的角;
(3)在(2)的條件下,求二面角C-PA-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案