設(shè)1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比為q的等比數(shù)列,a2,a4,a6成公差為1的等差數(shù)列,則q的最小值是( 。
A、1
B、
2
C、
33
D、2
考點(diǎn):等比數(shù)列的性質(zhì),等差數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:由已知利用等差數(shù)列的通項(xiàng)公式將a6用a2表示,求出a6的最小值,進(jìn)而可求出a7的最小值,利用等比數(shù)列的通項(xiàng)即可求出q3的范圍.
解答: 解:∵1=a1≤a2≤…≤a7;   a2,a4,a6 成公差為1的等差數(shù)列,
∴a6=a2+2≥3,∴a6的最小值為3,∴a7的最小值也為3,
∵a1=1且a1,a3,a5,a7 成公比為q的等比數(shù)列,必有q>0,
∴a7=a1q3≥3,∴q3≥3
∴q的最小值是
33

故選:C.
點(diǎn)評(píng):本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式,涉及不等式的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓的方程是x2+y2+2ax+2y+(a-1)2=0,0<a<1時(shí)原點(diǎn)與圓的位置關(guān)系是( 。
A、原點(diǎn)在圓上B、原點(diǎn)在圓外
C、原點(diǎn)在圓內(nèi)D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=loga|x|(a>0且a≠1),偶函數(shù)g(x)滿足g(1+x)=g(1-x),且當(dāng)x∈[0,1]時(shí),g(x)=x,若在區(qū)間[-5,5]內(nèi),函數(shù)F(x)=f(x)-g(x)有六個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,設(shè)命題p:函數(shù)y=logax在(0,+∞)上是增函數(shù),命題q:x2-x+a≥0對(duì)任意實(shí)數(shù)x恒成立,如果p∨q為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

十名干部選三人分別擔(dān)任班長副班長團(tuán)支書,共有
 
種方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的各項(xiàng)按如下規(guī)律排列:
1
1
2
1
,
2
2
3
1
,
3
2
3
3
,
4
1
,
4
2
,
4
3
,
4
4
,…則a2012=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:f″(x)是函數(shù)y=f(x)的導(dǎo)函數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))y=f(x)”.有同學(xué)發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”,任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是“對(duì)稱中心”.請(qǐng)你將這一發(fā)現(xiàn)作為條件,則函數(shù)f(x)=x3-3x2+3x的對(duì)稱中心為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
k
x
,且此函數(shù)圖象過點(diǎn)(2,6)
(1)求實(shí)數(shù)k的值;
(2)判斷函數(shù)f(x)的奇偶性;
(3)判斷函數(shù)f(x)在[3,+∞)上的單調(diào)性,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線L:y=ax+b與曲線T:x=
1
y
+y沒有公共點(diǎn),若平行L的直線與曲線T有且只有一個(gè)公共點(diǎn),則符合條件的直線有幾條?

查看答案和解析>>

同步練習(xí)冊(cè)答案