13.(lg2)2+lg2•lg5+$\frac{lo{g}_{3}5}{lo{g}_{3}10}$的值為1.

分析 根據(jù)lg2+lg5=1,進行計算即可.

解答 解:(lg2)2+lg2•lg5+$\frac{lo{g}_{3}5}{lo{g}_{3}10}$=lg2(lg2+lg5)+lg5=lg2+lg5=1,
故答案為:1.

點評 本題考查了對數(shù)的運算性質,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.下列四個命題,其中是假命題的是(  )
A.不存在無窮多個角α和β,使得sin(α+β)=sinαcosβ-cosαsinβ
B.存在這樣的角α和β,使得cos(α+β)=cosαcosβ+sinαsinβ
C.對任意角α和β,都有cos(α+β)=cosαcosβ-sinαsinβ
D.不存在這樣的角α和β,使得sin(α+β)≠sinαcosβ+cosαsinβ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知命題p:?x∈R,x-1≥lgx,命題q:?x∈(0,π),sinx+$\frac{1}{sinx}$>2,則下列判斷正確的是( 。
A.命題p∨q是假命題B.命題p∧q是真命題
C.命題p∨(¬q)是假命題D.命題p∧(¬q)是真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如圖,在面積為4的平行四邊形ABCD中,點P為直線AD上的動點,則$\overrightarrow{PB}•\overrightarrow{PC}+{\overrightarrow{BC}^2}$的最小值為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.(1)求函數(shù)$y=sin(\frac{π}{3}-2x)$,x∈[-π,π]的單調遞減區(qū)間;
(2)求函數(shù)$y=3tan(\frac{π}{6}-\frac{x}{4})$的周期及單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列函數(shù)中f(x)=$\frac{1}{x},f(x)={(x-1)^2},f(x)={e^x}$,f(x)=ln(x+1)滿足“對任意的x1,x2∈(0,+∞),當x1<x2時,都有f(x1)>f(x2)”的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如果直線x+ay+3=0與直線ax+4y+6=0互相平行,則實數(shù)a的值為( 。
A.2B.-2C.0D.-2或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.空間四邊形的各邊相等,順次連接各邊中點所得的四邊形是正方形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在等邊△ABC中,M為△ABC內一動點,∠BMC=120°,則$\frac{MA}{MC}$的最小值是( 。
A.1B.$\frac{3}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步練習冊答案