7.已知{an}是等差數(shù)列,a10=20,其前10項(xiàng)和S10=110,則其公差d等于( 。
A.-1B.-2C.1D.2

分析 利用等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出.

解答 解:由題意可得:$\left\{\begin{array}{l}{{a}_{1}+9d=20}\\{10{a}_{1}+\frac{10×9}{2}d=110}\end{array}\right.$,解得d=2.
故選:D.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.△ABC中,若sinC=(${\sqrt{3}$cosA+sinA)cosB,則( 。
A.B=$\frac{π}{3}$B.2b=a+c
C.△ABC是直角三角形D.a2=b2+c2或2B=A+C

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.某高中學(xué)校三個(gè)年級(jí)共有學(xué)生3 000人,其中一、二、三年級(jí)的人數(shù)比為2:3:1,用分層抽樣的方法從中抽取一個(gè)容量為180的樣本,則高三年級(jí)應(yīng)抽取學(xué)生人數(shù)為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=${(\frac{1}{2})^{{x^2}+4x+3}}$-t,g(x)=x+1+$\frac{4}{x+1}$+t,若?x1∈R,?x2∈(-∞,-1),使得f(x1)≤g(x2),則實(shí)數(shù)t的取值范圍是(  )
A.(-∞,0]B.(0,2]C.(-∞,-2]D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.曲線(xiàn)C是平面內(nèi)與三個(gè)定點(diǎn)F1(-1,0),F(xiàn)2(1,0)和F3(0,1)的距離的和等于2$\sqrt{2}$的點(diǎn)的軌跡.給出下列四個(gè)結(jié)論:
①曲線(xiàn)C關(guān)于x軸、y軸均對(duì)稱(chēng);
②曲線(xiàn)C上存在一點(diǎn)P,使得|PF3|=$\frac{{2\sqrt{2}}}{3}$;
③若點(diǎn)P在曲線(xiàn)C上,則△F1PF2的面積最大值是1;
④三角形PF2F3面積的最大值為$\frac{{\sqrt{3}}}{2}$;
其中所有真命題的序號(hào)是③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知sinα-cosα=$\sqrt{2}$,α∈(0,π),則cos(2α-$\frac{π}{4}$)等于( 。
A.-1B.-$\frac{\sqrt{2}}{2}$C.0D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)F1,F(xiàn)2為橢圓C:$\frac{{x}^{2}}{4}$+y2=1的左、右焦點(diǎn),點(diǎn)P在C上,|PF1|=2|PF2|,則cos∠F1PF2=( 。
A.$\frac{7}{16}$B.$\frac{25}{16}$C.-$\frac{7}{16}$D.-$\frac{25}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知在△ABC中,a、b、c分別為角A、B、C的對(duì)邊.若b•cosC+c•cosB=4a•cosB,b=4,則△ABC的面積的最大值為$\frac{{4\sqrt{15}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)復(fù)數(shù)z滿(mǎn)足z(2+i)=10-5i,(i為虛數(shù)單位),則復(fù)數(shù)z的實(shí)部為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案