(本小題滿(mǎn)分12分)證明:能夠被6整除.
見(jiàn)解析.
本試題主要是考查了運(yùn)用數(shù)學(xué)歸納法證明與自然數(shù)有關(guān)的命題的證明問(wèn)題的運(yùn)用。首先對(duì)于n=1證明,然后假設(shè)當(dāng)當(dāng)時(shí),命題成立,即能夠被6整除.,在此基礎(chǔ)上可推導(dǎo)當(dāng)時(shí),命題也成立即可。
證明:1)當(dāng)時(shí),顯然能夠被6整除,命題成立.
2)假設(shè)當(dāng)時(shí),命題成立,即能夠被6整除.
當(dāng)時(shí),

.
由假設(shè)知能夠被6整除,而是偶數(shù),故能夠被6整除,從而能夠被6整除.因此,當(dāng)時(shí)命題成立.
由1)2)知,命題對(duì)一切正整數(shù)成立,即能夠被6整除;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分15分)本題理科做.
設(shè),)。
(1)求出的值;
(2)求證:數(shù)列的各項(xiàng)均為奇數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)
用數(shù)學(xué)歸納法證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明不等式,第二步由k到k+1時(shí)不等式左邊需增加(      )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明,在驗(yàn)證成立時(shí),左邊所得的項(xiàng)為   (   )
A.1B.1+C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明:1+++時(shí),在第二步證明從n=k到n=k+1成立時(shí),左邊增加的項(xiàng)數(shù)是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

證明時(shí),假設(shè)當(dāng)時(shí)成立,則當(dāng)時(shí),左邊增加的項(xiàng)數(shù)為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

利用數(shù)學(xué)歸納法證明“1+a+a2+…+an+1 =, (a≠1,n∈N)”時(shí),在驗(yàn)證n=1成立時(shí),左邊應(yīng)該是  (   )
A.1B.1+aC.1+a+a2D.1+a+a2+a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知f(n)=(2n+7)·3n+9,存在自然數(shù)m,使得對(duì)任意n∈N,都能使m整除f(n),則最大的m的值為(    )
A.30B.26C.36D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案