分析 (Ⅰ)由條件利用同角三角函數(shù)的基本關(guān)系,求得$\frac{cosα-sinα}{cosα+sinα}$=$\frac{1-tanα}{1+tanα}$的值.
(Ⅱ)由題意可得sinα=3cosα,根據(jù)9cos2α+cos2α=1,求得cosα的值,可得sinα-cosα=2cosα的值.
解答 解:(Ⅰ)∵tanα=3,
∴$\frac{cosα-sinα}{cosα+sinα}=\frac{1-tanα}{1+tanα}=-\frac{1}{2}$;
(Ⅱ)∵tanα=3,
∴sinα=3cosα,
∴9cos2α+cos2α=1,
∴$cosα=±\frac{{\sqrt{10}}}{10}$,
所以$sinα-cosα=2cosα=±\frac{{\sqrt{10}}}{5}$.
點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{10}$ | B. | $\sqrt{10}$ | C. | 2$\sqrt{5}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$-1 | B. | $\frac{3π}{2}$+1 | C. | $\frac{π}{2}$-$\frac{{\sqrt{2}}}{2}$ | D. | $\frac{3π}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com