分析 (1)設橢圓方程為mx2+ny2=1,m>0,n>0,m≠n,利用待定系數(shù)法能求出橢圓E的方程.
(2)設A(x1,y1),B(x2,y2),則$\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}$=1,$\frac{{{x}_{2}}^{2}}{2}+{{y}_{2}}^{2}$=1,利用點差法能證明k1+k2=0.
(3)當l與y軸平行時,設直線l與橢圓相交于C、D兩點,設Q(x0,0),由已知推導出${x}_{0}=\frac{2}{t}$,從而得到存在不同于點P不同的定點Q滿足條件,則Q點坐標只可能為($\frac{2}{t}$,0).再證明對任意直線l,均有$\frac{QA}{QB}=\frac{PA}{PB}$.
解答 解:(1)設橢圓方程為mx2+ny2=1,m>0,n>0,m≠n,
∵橢圓E經(jīng)過兩點(1,$\frac{\sqrt{2}}{2}$),($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),
∴$\left\{\begin{array}{l}{m+\frac{1}{2}n=1}\\{\frac{1}{2}m+\frac{3}{4}n=1}\end{array}\right.$,解得m=$\frac{1}{2}$,n=1,
∴橢圓E的方程為$\frac{{x}^{2}}{2}+{y}^{2}$=1.
(2)設A(x1,y1),B(x2,y2),則$\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}$=1,$\frac{{{x}_{2}}^{2}}{2}+{{y}_{2}}^{2}$=1,
由題意P(1,0),Q(2,0),
∵$\overrightarrow{AP}$∥$\overrightarrow{BP}$,∴(x1-1,y1)∥(x2-1,y2),
∴x1y2-x2y1=y1-y2,
∵(x1y2-x2y1)(x1y2+x2y1)=${{x}_{1}}^{2}{{y}_{2}}^{2}-{{x}_{2}}^{2}{{y}_{1}}^{2}$
=(2-y12)${{y}_{2}}^{2}$-(2-${{y}_{2}}^{2}$)${{y}_{1}}^{2}$=$2{{y}_{2}}^{2}-2{{y}_{1}}^{2}$,
∴(x1y2+x2y1)(y1-y2)=${{2y}_{2}}^{2}-2{{y}_{1}}^{2}$=2(y1-y2)(y1+y2),
若y1=y2,則k1=k2=0,結(jié)論成立.
若y1≠y2,則x1y2+x2y1=2(y1+y2),
∴${k}_{1}+{k}_{2}=\frac{{y}_{1}}{{x}_{1}-2}+\frac{{y}_{2}}{{x}_{2}-2}$=$\frac{{x}_{1}{y}_{2}+{x}_{2}{y}_{1}-2({y}_{1}+{y}_{2})}{({x}_{1}-2)({x}_{2}-2)}$=0.
(3)當l與y軸平行時,設直線l與橢圓相交于C、D兩點,
如果存在定點Q滿足條件,則有$\frac{QC}{QD}$=$\frac{PC}{PD}$,
∴QC=QD,∴Q在x軸上,設Q(x0,0),
當直線l與y軸垂直時,設直線l與橢圓相交于M,N兩點,
則M,N的坐標分別為($\sqrt{2}$,0),(-$\sqrt{2}$,0),
由$\frac{OM}{ON}=\frac{PM}{PN}$,有|$\frac{{x}_{0}-\sqrt{2}}{{x}_{0}+\sqrt{2}}$|=|$\frac{\sqrt{2}-t}{\sqrt{2}+t}$|,
解得${x}_{0}=\frac{2}{t}$,
∴若存在不同于點P不同的定點Q滿足條件,則Q點坐標只可能為($\frac{2}{t}$,0).
下面證明:對任意直線l,均有$\frac{QA}{QB}=\frac{PA}{PB}$,
記直線AQ的斜率為k1,直線BQ的斜率為k2,
設A(x1,y1),B(x2,y2),則$\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}$=1,$\frac{{{x}_{2}}^{2}}{2}+{{y}_{2}}^{2}$=1.
由題意P(t,0),Q($\frac{2}{t}$,0),
∵$\overrightarrow{AP}$∥$\overrightarrow{BP}$,∴(x1-t,y1)∥(x2-t,y2),
∴x1y2-x2y1=t(y1-y2),
∵(x1y2-x2y1)t(y1-y2)=$2{{y}_{2}}^{2}-2{{y}_{1}}^{2}$=2(y1-y2)(y1+y2),
若y1=y2,則k1=k2=0,
若y1≠y2,則x1y2+x2y1=$\frac{2}{t}({y}_{1}+{y}_{2})$,
∴k1+k2=$\frac{{y}_{1}}{{x}_{1}-\frac{2}{t}}$+$\frac{{y}_{2}}{{x}_{2}-\frac{2}{t}}$=$\frac{{x}_{1}{y}_{2}+{x}_{2}{y}_{1}-\frac{2}{t}({y}_{1}+{y}_{2})}{({x}_{1}-\frac{2}{t})({x}_{2}-\frac{2}{t})}$=0,
∵點B關于x軸對稱的點B′(-x2,y2),∴${k}_{QA}={k}_{Q{B}^{'}}$,∴Q,A,B三點共線,
∴$\frac{QA}{QB}$=$\frac{QA}{Q{B}^{'}}$=$\frac{|{y}_{1}|}{|{y}_{2}|}$=$\frac{PA}{PB}$,
∴對任意直線l,均有$\frac{QA}{QB}=\frac{PA}{PB}$.
點評 本題考查橢圓方程的求法,考查兩直線斜率之和為定值的證明,考查滿足條件的點的坐標的求法,是中檔題,解題時要認真審題,注意橢圓性質(zhì)、待定系數(shù)法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
學生 | A1 | A2 | A3 | A4 | A5 |
語文(x分) | 89 | 91 | 93 | 95 | 97 |
英語(y分) | 87 | 89 | 89 | 92 | 93 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
編號 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 178 | 166 | 175 | 180 |
y | 75 | 80 | 77 | 70 | 81 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 13 | B. | $\sqrt{37}$ | C. | $\sqrt{13}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{3}{5}$,4] | B. | [$\frac{4}{5}$,5] | C. | [$\frac{4}{5}$,6] | D. | [$\frac{3}{5}$,5] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com