10.橢圓E經(jīng)過(guò)兩點(diǎn)(1,$\frac{\sqrt{2}}{2}$),($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),過(guò)點(diǎn)P的動(dòng)直線l與橢圓相交于A,B兩點(diǎn).
(1)求橢圓E的方程;
(2)若橢圓E的右焦點(diǎn)是P,其右準(zhǔn)線與x軸交于點(diǎn)Q,直線AQ的斜率為k1,直線BQ的斜率為k2,求證:k1+k2=0;
(3)設(shè)點(diǎn)P(t,0)是橢圓E的長(zhǎng)軸上某一點(diǎn)(不為長(zhǎng)軸頂點(diǎn)及坐標(biāo)原點(diǎn)),是否存在與點(diǎn)P不同的定點(diǎn)Q,使得$\frac{QA}{QB}$=$\frac{PA}{PB}$恒成立?只需寫出點(diǎn)Q的坐標(biāo),無(wú)需證明.

分析 (1)設(shè)橢圓方程為mx2+ny2=1,m>0,n>0,m≠n,利用待定系數(shù)法能求出橢圓E的方程.
(2)設(shè)A(x1,y1),B(x2,y2),則$\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}$=1,$\frac{{{x}_{2}}^{2}}{2}+{{y}_{2}}^{2}$=1,利用點(diǎn)差法能證明k1+k2=0.
(3)當(dāng)l與y軸平行時(shí),設(shè)直線l與橢圓相交于C、D兩點(diǎn),設(shè)Q(x0,0),由已知推導(dǎo)出${x}_{0}=\frac{2}{t}$,從而得到存在不同于點(diǎn)P不同的定點(diǎn)Q滿足條件,則Q點(diǎn)坐標(biāo)只可能為($\frac{2}{t}$,0).再證明對(duì)任意直線l,均有$\frac{QA}{QB}=\frac{PA}{PB}$.

解答 解:(1)設(shè)橢圓方程為mx2+ny2=1,m>0,n>0,m≠n,
∵橢圓E經(jīng)過(guò)兩點(diǎn)(1,$\frac{\sqrt{2}}{2}$),($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),
∴$\left\{\begin{array}{l}{m+\frac{1}{2}n=1}\\{\frac{1}{2}m+\frac{3}{4}n=1}\end{array}\right.$,解得m=$\frac{1}{2}$,n=1,
∴橢圓E的方程為$\frac{{x}^{2}}{2}+{y}^{2}$=1.
(2)設(shè)A(x1,y1),B(x2,y2),則$\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}$=1,$\frac{{{x}_{2}}^{2}}{2}+{{y}_{2}}^{2}$=1,
由題意P(1,0),Q(2,0),
∵$\overrightarrow{AP}$∥$\overrightarrow{BP}$,∴(x1-1,y1)∥(x2-1,y2),
∴x1y2-x2y1=y1-y2,
∵(x1y2-x2y1)(x1y2+x2y1)=${{x}_{1}}^{2}{{y}_{2}}^{2}-{{x}_{2}}^{2}{{y}_{1}}^{2}$
=(2-y12)${{y}_{2}}^{2}$-(2-${{y}_{2}}^{2}$)${{y}_{1}}^{2}$=$2{{y}_{2}}^{2}-2{{y}_{1}}^{2}$,
∴(x1y2+x2y1)(y1-y2)=${{2y}_{2}}^{2}-2{{y}_{1}}^{2}$=2(y1-y2)(y1+y2),
若y1=y2,則k1=k2=0,結(jié)論成立.
若y1≠y2,則x1y2+x2y1=2(y1+y2),
∴${k}_{1}+{k}_{2}=\frac{{y}_{1}}{{x}_{1}-2}+\frac{{y}_{2}}{{x}_{2}-2}$=$\frac{{x}_{1}{y}_{2}+{x}_{2}{y}_{1}-2({y}_{1}+{y}_{2})}{({x}_{1}-2)({x}_{2}-2)}$=0.
(3)當(dāng)l與y軸平行時(shí),設(shè)直線l與橢圓相交于C、D兩點(diǎn),
如果存在定點(diǎn)Q滿足條件,則有$\frac{QC}{QD}$=$\frac{PC}{PD}$,
∴QC=QD,∴Q在x軸上,設(shè)Q(x0,0),
當(dāng)直線l與y軸垂直時(shí),設(shè)直線l與橢圓相交于M,N兩點(diǎn),
則M,N的坐標(biāo)分別為($\sqrt{2}$,0),(-$\sqrt{2}$,0),
由$\frac{OM}{ON}=\frac{PM}{PN}$,有|$\frac{{x}_{0}-\sqrt{2}}{{x}_{0}+\sqrt{2}}$|=|$\frac{\sqrt{2}-t}{\sqrt{2}+t}$|,
解得${x}_{0}=\frac{2}{t}$,
∴若存在不同于點(diǎn)P不同的定點(diǎn)Q滿足條件,則Q點(diǎn)坐標(biāo)只可能為($\frac{2}{t}$,0).
下面證明:對(duì)任意直線l,均有$\frac{QA}{QB}=\frac{PA}{PB}$,
記直線AQ的斜率為k1,直線BQ的斜率為k2,
設(shè)A(x1,y1),B(x2,y2),則$\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}$=1,$\frac{{{x}_{2}}^{2}}{2}+{{y}_{2}}^{2}$=1.
由題意P(t,0),Q($\frac{2}{t}$,0),
∵$\overrightarrow{AP}$∥$\overrightarrow{BP}$,∴(x1-t,y1)∥(x2-t,y2),
∴x1y2-x2y1=t(y1-y2),
∵(x1y2-x2y1)t(y1-y2)=$2{{y}_{2}}^{2}-2{{y}_{1}}^{2}$=2(y1-y2)(y1+y2),
若y1=y2,則k1=k2=0,
若y1≠y2,則x1y2+x2y1=$\frac{2}{t}({y}_{1}+{y}_{2})$,
∴k1+k2=$\frac{{y}_{1}}{{x}_{1}-\frac{2}{t}}$+$\frac{{y}_{2}}{{x}_{2}-\frac{2}{t}}$=$\frac{{x}_{1}{y}_{2}+{x}_{2}{y}_{1}-\frac{2}{t}({y}_{1}+{y}_{2})}{({x}_{1}-\frac{2}{t})({x}_{2}-\frac{2}{t})}$=0,
∵點(diǎn)B關(guān)于x軸對(duì)稱的點(diǎn)B′(-x2,y2),∴${k}_{QA}={k}_{Q{B}^{'}}$,∴Q,A,B三點(diǎn)共線,
∴$\frac{QA}{QB}$=$\frac{QA}{Q{B}^{'}}$=$\frac{|{y}_{1}|}{|{y}_{2}|}$=$\frac{PA}{PB}$,
∴對(duì)任意直線l,均有$\frac{QA}{QB}=\frac{PA}{PB}$.

點(diǎn)評(píng) 本題考查橢圓方程的求法,考查兩直線斜率之和為定值的證明,考查滿足條件的點(diǎn)的坐標(biāo)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)、待定系數(shù)法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某小學(xué)五年級(jí)一次考試中,五名同學(xué)的語(yǔ)文、英語(yǔ)成績(jī)?nèi)绫硭荆?br />
學(xué)生A1A2A3A4A5
語(yǔ)文(x分)8991939597
英語(yǔ)(y分)8789899293
(1)請(qǐng)?jiān)谙聢D的直角坐標(biāo)系中作出這些數(shù)據(jù)的散點(diǎn)圖,并求出這些數(shù)據(jù)的回歸方程;
(2)要從4名語(yǔ)文成績(jī)?cè)?0分以上的同學(xué)中選2人參加一項(xiàng)活動(dòng),以X表示選中的同學(xué)的英語(yǔ)成績(jī)高于90分的人數(shù),求隨機(jī)變量X不小于1的概率.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.為了了解某天甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,
測(cè)量產(chǎn)品中的微量元素x,y的含量(單位:微克),當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175,且y≥75時(shí),該產(chǎn)品為優(yōu)等品.已知該天甲廠生產(chǎn)的產(chǎn)品共有98件,如表是乙廠的5件產(chǎn)品的測(cè)量數(shù)據(jù):
編號(hào) 1 2 3 4 5
 x 169 178 166 175 180
 y 75 80 77 7081
(1)求乙廠該天生產(chǎn)的產(chǎn)品數(shù)量;
(2)用上述樣本數(shù)據(jù)統(tǒng)計(jì)乙廠該天生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽取的上述5件產(chǎn)品中,隨機(jī)抽取2件.求抽取的2件產(chǎn)品中優(yōu)等品的件數(shù)X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.平面向量$\overrightarrow{a}$與$\overrightarrow$夾角為$\frac{2π}{3}$,$\overrightarrow a=({3,0}),|{\overrightarrow b}|=2$,則$|{\overrightarrow a+2\overrightarrow b}|$等于( 。
A.13B.$\sqrt{37}$C.$\sqrt{13}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.A,B兩地之間隔著一個(gè)水塘(如圖),現(xiàn)選擇另一點(diǎn)C,測(cè)得CA=10$\sqrt{7}$km,CB=10km,∠CBA=60°.
(1)求A,B兩地之間的距離;
(2)若點(diǎn)C在移動(dòng)過(guò)程中,始終保持∠ACB=60°不變,問(wèn)當(dāng)∠CAB何值時(shí),△ABC的面積最大?并求出面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖所示,在△ABC中,AO是BC邊上的中線,K為AO上一點(diǎn),且$\overrightarrow{AO}$=2$\overrightarrow{AK}$,過(guò)點(diǎn)K的直線分別交直線AB、AC于不同的兩點(diǎn)M,N,若$\overrightarrow{AB}$=m$\overrightarrow{AM}$,$\overrightarrow{AC}$=n$\overrightarrow{AN}$,則m+n=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知圓C過(guò)點(diǎn)P(1,1),且與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對(duì)稱.
(1)求圓C的方程;
(2)求過(guò)Q(-3,2)的圓C的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知點(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$表示的平面區(qū)域上運(yùn)動(dòng),則z=x2+y2的取值范圍是( 。
A.[$\frac{3}{5}$,4]B.[$\frac{4}{5}$,5]C.[$\frac{4}{5}$,6]D.[$\frac{3}{5}$,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.復(fù)數(shù)z=i2017,則z的虛部為( 。
A.-iB.iC.-1D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案