7.已知函數(shù)f(x)=|x-2|-|x-5|.
(1)求函數(shù)f(x)的值域;
(2)若?x∈R,不等式f(x)≥t2-$\frac{7}{2}$t恒成立,求實數(shù)t的取值范圍.

分析 (1)去掉絕對值符號,將函數(shù)化為分段函數(shù)的形式,解出值域即可;
(2)求出f(x)的最小值,問題轉(zhuǎn)化為t2-$\frac{7}{2}$t≤-3,解出即可.

解答 解:(1)函數(shù)f(x)=|x-2|-|x-5|.
當(dāng)x≤2時,f(x)=2-x-(5-x)=-3,
當(dāng)2<x<5時,f(x)=x-2-(5-x)=2x-7∈(-3,3),
當(dāng)x≥5時,f(x)=x-2-(x-5)=3.
綜上函數(shù)f(x)的值域[-3,3].
(2)函數(shù)f(x)的最小值是-3,
若?x∈R,使得f(x)≥t2-$\frac{7}{2}$t恒成立,
即有f(x)min≥t2-$\frac{7}{2}$t,
即有t2-$\frac{7}{2}$t≤-3,解得:$\frac{3}{2}$≤t≤2,
則實數(shù)t的取值范圍為[$\frac{3}{2}$,2].

點(diǎn)評 本題考查了解絕對值不等式問題,考查分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知直線PA與半圓O切于點(diǎn)A,PO交半圓于B,C兩點(diǎn),AD⊥PO于點(diǎn)D.
(Ⅰ)求證:∠PAB=∠BAD;
(Ⅱ)求證:PB•CD=PC•BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)的定義域為R,f(-2)=2,對任意x∈R,f′(x)>2,則f(x)>2x+6的解集為( 。
A.(-2,2)B.(-∞,-2)C.(-2,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.定義在(0,$\frac{π}{2}$)上的函數(shù)f(x)的導(dǎo)數(shù)為f′(x),且恒有f(x)+f′(x)•tanx>0成立,則(  )
A.$\sqrt{2}$f($\frac{π}{4}$)>$\sqrt{3}$f($\frac{π}{3}$)B.$\sqrt{2}$f($\frac{π}{4}$)>f($\frac{π}{6}$)C.$\sqrt{2}$f($\frac{π}{4}$)<2f($\frac{π}{6}$)D.f($\frac{π}{4}$)>$\frac{1}{2}$f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)f(x)是定義在R上的偶函數(shù),對x∈R都有f(x-2)=f(x+2),且當(dāng)x∈[-2,0]時,f(x)=($\frac{1}{2}$)x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0恰有5個不同的實數(shù)根,則a的取值范圍是(  )
A.(1,2)B.(2,$\root{3}{12}$)C.(1,$\root{3}{4}$)D.(2,$\root{3}{10}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f'(x)為f(x)的導(dǎo)函數(shù),當(dāng)x≠0時,x•f'(x)<0恒成立,對于正數(shù)a,b有:A=f($\frac{a+b}{2}$),B=f($\sqrt{ab}$),C=f($\frac{2ab}{a+b}$),則A、B、C的大小關(guān)系為(  )
A.A≤B≤CB.A≤C≤BC.B≤C≤AD.C≤B≤A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.兩圓相交于點(diǎn)A,B,P是BA延長線上一點(diǎn),PCD,PEF分別是兩圓的割線,求證:C,D,E,F(xiàn)四點(diǎn)共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線C1:$\left\{\begin{array}{l}x=1+\frac{4}{5}t\\ y=1-\frac{3}{5}t\end{array}\right.$(t為參數(shù)),曲線C2:ρ=4cosθ
(1)將C1與C2化成普通方程與直角坐標(biāo)方程;
(2)求直線C1被曲線C2所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,在四棱錐S-ABCD中,底面ABCD為梯形,AD∥BC,AD⊥平面SCD,AD=DC=BC=1,SD=2,∠SDC=120°.
(1)求SC與平面SAB所成角的正弦值.
(2)求平面SAD與平面SAB所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案