A. | (-2,2) | B. | (-∞,-2) | C. | (-2,+∞) | D. | (-∞,+∞) |
分析 構(gòu)建函數(shù)F(x)=f(x)-(2x+6),由f(-2)=2得出F(-2)的值,求出F(x)的導(dǎo)函數(shù),根據(jù)f′(x)>2,得到F(x)在R上為增函數(shù),根據(jù)函數(shù)的增減性即可得到F(x)大于0的解集,進(jìn)而得到所求不等式的解集.
解答 解:設(shè)F(x)=f(x)-(2x+6),
則F(-2)=f(-2)-(-4+6)=2-2=0,
又對任意x∈R,f′(x)>2,所以F′(x)=f′(x)-2>0,
即F(x)在R上單調(diào)遞增,
則F(x)>0的解集為(-2,+∞),
即f(x)>2x+6的解集為(-2,+∞).
故選:C.
點評 本題考查學(xué)生靈活運用函數(shù)思想求解不等式,解題的關(guān)鍵是構(gòu)建函數(shù),確定函數(shù)的單調(diào)性,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0) | B. | (-$\frac{1}{2}$,0) | C. | (-2,0) | D. | (-$\frac{1}{3}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4032 | B. | 4036 | C. | 2016 | D. | 2018 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | c>b>a | C. | c>a>b | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com