分析 a=b=0時,不等式asinx+bcosx≤1恒成立.a(chǎn)與b不全為0時,不等式asinx+bcosx≤1化為:sin(x+θ)≤$\frac{1}{\sqrt{{a}^{2}+^{2}}}$,由于對任意的x∈R,不等式asinx+bcosx≤1恒成立”,可得$\frac{1}{\sqrt{{a}^{2}+^{2}}}$≥1,化簡即可判斷出結(jié)論
解答 解:a=b=0時,不等式asinx+bcosx≤1恒成立
a與b不全為0時,不等式asinx+bcosx≤1化為:sin(x+θ)≤$\frac{1}{\sqrt{{a}^{2}+^{2}}}$,
∵對任意的x∈R,不等式asinx+bcosx≤1恒成立”,
∴$\frac{1}{\sqrt{{a}^{2}+^{2}}}$≥1,
∴a2+b2≤1,畫出圖象:可知:(a,b)表示的是以原點為圓心,1為半徑的圓及其內(nèi)部.
而|a|+|b|≤1可知:(a,b)表示的是正方形ABCD及其內(nèi)部.
∴p是q的充分不必要條件,
故答案為:充分不必要.
點評 本題考查了三角函數(shù)求值、不等式的性質(zhì)、簡易邏輯的判定方法,考查了數(shù)形結(jié)合方法、推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}$+$\frac{3}{5}$i | B. | $\frac{3}{5}$+$\frac{1}{5}$i | C. | $\frac{1}{5}$-$\frac{3}{5}$i | D. | $\frac{3}{5}$-$\frac{1}{5}$i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)f(x)的最小正周期為π | |
B. | 函數(shù)f(x)在區(qū)間[0,$\frac{π}{4}$]上是增函數(shù) | |
C. | 函數(shù)f(x)的圖象可由g(x)=sin2x的圖象向右平移$\frac{π}{6}$個單位得到 | |
D. | 函數(shù)f(x)的圖象關于直線x=$\frac{π}{3}$對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 16 | B. | $\frac{33}{2}$ | C. | $\frac{35}{2}$ | D. | 18 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com