【題目】已知函數(shù).

1)討論函數(shù)極值點的個數(shù);

2)當(dāng)時,不等式上恒成立,求實數(shù)的取值范圍.

【答案】1)見解析;(2.

【解析】

1)求出導(dǎo)函數(shù),分兩種情況討論,判斷導(dǎo)函數(shù)的符號,判斷函數(shù)的單調(diào)性,求解函數(shù)的極值即可;

2)當(dāng)時,由題即上恒成立,令,對兩種情況討論,判斷函數(shù)的單調(diào)性求解函數(shù)的最值,推出結(jié)果.求解的取值范圍.

1.

①當(dāng)時,,所以上單調(diào)遞增,無極值;

②當(dāng)時,令,得.

當(dāng)時,;當(dāng)時,.

所以,函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

此時,函數(shù)只有一個極值點.

綜上所述,當(dāng)時,函數(shù)上無極值點;

當(dāng)時,函數(shù)上只有一個極值點;

2)當(dāng)時,由題即上恒成立,

,

,

,

.

)當(dāng)時,即時,

由于,,而

所以,故函數(shù)上單調(diào)遞增,所以

,故函數(shù)上單調(diào)遞增,所以

上恒成立,故符合題意;

)當(dāng)時,即,

由于上單調(diào)遞增,

,因為

故在上存在唯一的,使

因此,當(dāng)時,,此時函數(shù)單調(diào)遞減,所以,

,函數(shù)上單調(diào)遞減,故,與題意不符.

綜上所述,的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,為等邊三角形,邊長為2,為等腰直角三角形,,,平面平面ABCD.

(1)證明:平面PAD;

(2)求平面PAD與平面PBC所成銳二面角的余弦值;

(3)棱PD上是否存在一點E,使得平面PBC?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某居民區(qū)內(nèi)有一直角梯形區(qū)域,百米,百米.該區(qū)域內(nèi)原有道路,現(xiàn)新修一條直道(寬度忽略不計),點在道路上(異于,兩點),.

1)用表示直道的長度;

2)計劃在區(qū)域內(nèi)修建健身廣場,在區(qū)域內(nèi)種植花草.已知修建健身廣場的成本為每平方百米4萬元,種植花草的成本為每平方百米2萬元,新建道路的成本為每百米4萬元,求以上三項費用總和的最小值(單位:萬元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若上單調(diào)遞增,求的取值范圍;

2)證明:當(dāng)時,不等式上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A0,4),拋物線Cx22py0p4)的準(zhǔn)線為1,點PC上,作PHlH,且|PH||PA|,∠APH120°,則拋物線方程為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點,,動點P為平面上一個動點,且直線SP,TP的斜率之積為.

1)求動點P的軌跡E的方程;

2)設(shè)點B為軌跡Ey軸正半軸的交點,是否存在斜率為直線l,使得l交軌跡EMN兩點,且恰是的重心?若存在,求l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C,過點且互相垂直的兩條動直線,與拋物線C分別交于PQM,N.

1)求四邊形面積的取值范圍;

2)記線段的中點分別為E,F,求證:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的公差為,前n項和為,且滿足____________.(從①);②成等比數(shù)列;③,這三個條件中任選兩個補充到題干中的橫線位置,并根據(jù)你的選擇解決問題)

I)求

(Ⅱ)若,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校名學(xué)生參加軍事冬令營活動,活動期間各自扮演一名角色進行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.

查看答案和解析>>

同步練習(xí)冊答案