【題目】如圖,某居民區(qū)內(nèi)有一直角梯形區(qū)域,,,百米,百米.該區(qū)域內(nèi)原有道路,現(xiàn)新修一條直道(寬度忽略不計(jì)),點(diǎn)在道路上(異于,兩點(diǎn)),,.
(1)用表示直道的長度;
(2)計(jì)劃在區(qū)域內(nèi)修建健身廣場,在區(qū)域內(nèi)種植花草.已知修建健身廣場的成本為每平方百米4萬元,種植花草的成本為每平方百米2萬元,新建道路的成本為每百米4萬元,求以上三項(xiàng)費(fèi)用總和的最小值(單位:萬元).
【答案】(1),.(2)萬元.
【解析】
(1) 過點(diǎn)作垂直于線段,垂足為得到,再在中,由正弦定理求得即可.
(2) 在中,由正弦定理求得,進(jìn)而根據(jù)求出,再根據(jù)題意表達(dá)出總費(fèi)用,再求導(dǎo)分析的單調(diào)性與最值即可.
(1)過點(diǎn)作垂直于線段,垂足為.
在直角中,因?yàn)?/span>,,,所以.
在直角中,因?yàn)?/span>,,所以,則,
故,
又,所以.
在中,由正弦定理得,
所以,.
(2)在中,由正弦定理得,
所以.
所以.
又.
所以.
設(shè)三項(xiàng)費(fèi)用總和為,
則
,,
所以,令,則.
列表:
- | 0 | + | |
單調(diào)遞減 | 單調(diào)遞增 |
所以時(shí),.
答:以上三項(xiàng)費(fèi)用總和的最小值為萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)用4種不同的顏色對(duì)如圖所示的正方形的6個(gè)區(qū)域進(jìn)行涂色,要求相鄰的區(qū)域不能涂同一種顏色,則不同的涂色方案有______種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某玩具廠擬定生產(chǎn)兩款新毛絨玩具樣品,一款為毛絨小豬,另一款為毛絨小狗.由設(shè)計(jì)圖知,生產(chǎn)這兩款毛絨玩具均需相同材質(zhì)的填充物、長毛絨、天鵝絨,且每個(gè)毛絨小豬需填充物、長毛絨、天鵝絨,每個(gè)毛絨小狗需填充物、長毛絨、天鵝絨.現(xiàn)有所需填充物、長毛絨、天鵝絨,若每個(gè)毛絨小豬與毛絨小狗的出廠價(jià)分別為64元、36元,則生這批毛絨玩具的最大銷售額為_______元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中,四邊形ABCD為平行四邊形,且點(diǎn)在底面上的投影H恰為CD的中點(diǎn).
(1)棱BC上存在一點(diǎn)N,使得AD⊥平面,試確定點(diǎn)N的位置,說明理由;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年初,由于疫情影響,開學(xué)延遲,為了不影響學(xué)生的學(xué)習(xí),國務(wù)院、省市區(qū)教育行政部門倡導(dǎo)各校開展“停學(xué)不停課、停學(xué)不停教”,某校語文學(xué)科安排學(xué)生學(xué)習(xí)內(nèi)容包含老師推送文本資料學(xué)習(xí)和視頻資料學(xué)習(xí)兩類,且這兩類學(xué)習(xí)互不影響已知其積分規(guī)則如下:每閱讀一篇文本資料積1分,每日上限積5分;觀看視頻1個(gè)積2分,每日上限積6分.經(jīng)過抽樣統(tǒng)計(jì)發(fā)現(xiàn),文本資料學(xué)習(xí)積分的概率分布表如表1所示,視頻資料學(xué)習(xí)積分的概率分布表如表2所示.
(1)現(xiàn)隨機(jī)抽取1人了解學(xué)習(xí)情況,求其每日學(xué)習(xí)積分不低于9分的概率;
(2)現(xiàn)隨機(jī)抽取3人了解學(xué)習(xí)情況,設(shè)積分不低于9分的人數(shù)為ξ,求ξ的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有6名選手參加才藝比賽,其中男、女選手各3名,且3名男選手分別表演歌唱、舞蹈和魔術(shù),3名女選手分別表演歌唱、舞蹈和魔術(shù),若要求相鄰出場的選手性別不同且表演的節(jié)目不同,則不同的出場方式的種數(shù)為( )
A.6B.12C.18D.24
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海南盛產(chǎn)各種名貴樹木,如紫檀、黃花梨等.在實(shí)際測量單根原木材體積時(shí),可以檢量木材的實(shí)際長度(檢尺長)和小頭直徑(檢尺徑),再通過國家公布的原木材積表直接查詢得到,原木材積表的部分?jǐn)?shù)據(jù)如下所示:
檢尺徑 () | 檢尺長() | ||||
2.0 | 2.2 | 2.4 | 2.5 | 2.6 | |
材積() | |||||
8 | 0.0130 | 0.0150 | 0.0160 | 0.0170 | 0.0180 |
10 | 0.0190 | 0.0220 | 0.0240 | 0.0250 | 0.0260 |
12 | 0.0270 | 0.0300 | 0.0330 | 0.0350 | 0.0370 |
14 | 0.0360 | 0.0400 | 0.0450 | 0.0470 | 0.0490 |
16 | 0.0470 | 0.0520 | 0.0580 | 0.0600 | 0.0630 |
18 | 0.0590 | 0.0650 | 0.0720 | 0.0760 | 0.0790 |
20 | 0.0720 | 0.0800 | 0.0880 | 0.0920 | 0.0970 |
22 | 0.0860 | 0.0960 | 0.1060 | 0.1110 | 0.1160 |
24 | 0.1020 | 0.1140 | 0.1250 | 0.1310 | 0.1370 |
若小李購買了兩根紫檀原木,一根檢尺長為,檢尺徑為,另一根檢尺長為,檢尺徑為,根據(jù)上表,可知兩根原木的材積之和為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)極值點(diǎn)的個(gè)數(shù);
(2)當(dāng)時(shí),不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,A為C的上頂點(diǎn),過A的直線l與C交于另一點(diǎn)B,與x軸交于點(diǎn)D,O點(diǎn)為坐標(biāo)原點(diǎn).
(1)若,求l的方程;
(2)已知P為AB的中點(diǎn),y軸上是否存在定點(diǎn)Q,使得?若存在,求Q的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com