【題目】已知點A(0,4),拋物線C:x2=2py(0<p<4)的準(zhǔn)線為1,點P在C上,作PH⊥l于H,且|PH|=|PA|,∠APH=120°,則拋物線方程為_____.
【答案】
【解析】
設(shè)拋物線的焦點為F(),則|AF|=4,由拋物線的定義可知,|PH|=|PF|=|PA|,不妨設(shè)點P在第一象限,過點P作PQ⊥y軸于點Q,則Q為AF的中點,結(jié)合∠APH=120°,可以用p表示出點P的坐標(biāo),然后將其代入拋物線方程,列出關(guān)于p的方程,解之可得p的值,從而求得拋物線的方程.
解:設(shè)拋物線的焦點為F(),|AF|=4,由拋物線的定義可知,|PH|=|PF|,
∵|PH|=|PA|,∴|PA|=|PF|,
不妨設(shè)點P在第一象限,過點P作PQ⊥y軸于點Q,則Q為AF的中點,|AQ|=|FQ||AF|,
∵∠APH=120°,∴∠APQ=120°﹣90°=30°,∴|PQ|,|OQ|=|FQ|+|OF|2,
∴點P的坐標(biāo)為,
∵點P在拋物線C上,∴,化簡得5p2+112p﹣192=0,解之得(舍負(fù)),
∴拋物線方程為.
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某“雙一流A類”大學(xué)就業(yè)部從該校2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機(jī)抽取了100人進(jìn)行問卷調(diào)查,其中一項是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據(jù)統(tǒng)計數(shù)據(jù)分組,得到如下的頻率分布直方圖:
(1)為感謝同學(xué)們對這項調(diào)查工作的支持,該校利用分層抽樣的方法從樣本的前兩組中抽出6人,各贈送一份禮品,并從這6人中再抽取2人,各贈送某款智能手機(jī)1部,求獲贈智能手機(jī)的2人月薪都不低于1.75萬元的概率;
(2)同一組數(shù)據(jù)用該區(qū)間的中點值作代表.
(i)求這100人月薪收入的樣本平均數(shù)和樣本方差;
(ii)該校在某地區(qū)就業(yè)的2018屆本科畢業(yè)生共50人,決定于2019國慶長假期間舉辦一次同學(xué)聯(lián)誼會,并收取一定的活動費用,有兩種收費方案:
方案一:設(shè),月薪落在區(qū)間左側(cè)的每人收取400元,月薪落在區(qū)間內(nèi)的每人收到600元,月薪落在區(qū)間右側(cè)的每人收取800元.
方案二:按每人一個月薪水的3%收;用該校就業(yè)部統(tǒng)計的這100人月薪收入的樣本頻率進(jìn)行估算,哪一種收費方案能收到更多的費用?
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年初,由于疫情影響,開學(xué)延遲,為了不影響學(xué)生的學(xué)習(xí),國務(wù)院、省市區(qū)教育行政部門倡導(dǎo)各校開展“停學(xué)不停課、停學(xué)不停教”,某校語文學(xué)科安排學(xué)生學(xué)習(xí)內(nèi)容包含老師推送文本資料學(xué)習(xí)和視頻資料學(xué)習(xí)兩類,且這兩類學(xué)習(xí)互不影響已知其積分規(guī)則如下:每閱讀一篇文本資料積1分,每日上限積5分;觀看視頻1個積2分,每日上限積6分.經(jīng)過抽樣統(tǒng)計發(fā)現(xiàn),文本資料學(xué)習(xí)積分的概率分布表如表1所示,視頻資料學(xué)習(xí)積分的概率分布表如表2所示.
(1)現(xiàn)隨機(jī)抽取1人了解學(xué)習(xí)情況,求其每日學(xué)習(xí)積分不低于9分的概率;
(2)現(xiàn)隨機(jī)抽取3人了解學(xué)習(xí)情況,設(shè)積分不低于9分的人數(shù)為ξ,求ξ的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海南盛產(chǎn)各種名貴樹木,如紫檀、黃花梨等.在實際測量單根原木材體積時,可以檢量木材的實際長度(檢尺長)和小頭直徑(檢尺徑),再通過國家公布的原木材積表直接查詢得到,原木材積表的部分?jǐn)?shù)據(jù)如下所示:
檢尺徑 () | 檢尺長() | ||||
2.0 | 2.2 | 2.4 | 2.5 | 2.6 | |
材積() | |||||
8 | 0.0130 | 0.0150 | 0.0160 | 0.0170 | 0.0180 |
10 | 0.0190 | 0.0220 | 0.0240 | 0.0250 | 0.0260 |
12 | 0.0270 | 0.0300 | 0.0330 | 0.0350 | 0.0370 |
14 | 0.0360 | 0.0400 | 0.0450 | 0.0470 | 0.0490 |
16 | 0.0470 | 0.0520 | 0.0580 | 0.0600 | 0.0630 |
18 | 0.0590 | 0.0650 | 0.0720 | 0.0760 | 0.0790 |
20 | 0.0720 | 0.0800 | 0.0880 | 0.0920 | 0.0970 |
22 | 0.0860 | 0.0960 | 0.1060 | 0.1110 | 0.1160 |
24 | 0.1020 | 0.1140 | 0.1250 | 0.1310 | 0.1370 |
若小李購買了兩根紫檀原木,一根檢尺長為,檢尺徑為,另一根檢尺長為,檢尺徑為,根據(jù)上表,可知兩根原木的材積之和為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是
A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)極值點的個數(shù);
(2)當(dāng)時,不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線E的極坐標(biāo)方程為,直線l的參數(shù)方程為(t為參數(shù)).點P為曲線E上的動點,點Q為線段OP的中點.
(1)求點Q的軌跡(曲線C)的直角坐標(biāo)方程;
(2)若直線l交曲線C于A,B兩點,點恰好為線段AB的三等分點,求直線l的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的公差為,前n項和為,且滿足____________.(從①);②成等比數(shù)列;③,這三個條件中任選兩個補充到題干中的橫線位置,并根據(jù)你的選擇解決問題)
(I)求;
(Ⅱ)若,求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),以平面直角坐標(biāo)系的原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)過點,傾斜角為的直線l與曲線C相交于M,N兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com