15.已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且對任意的n∈N*,都有2Sn=n2+n.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ) 數(shù)列{bn}滿足b1=1,2bn+1-bn=0(n∈N*),若cn=anbn,求數(shù)列{cn}的前n項和為Tn;
(Ⅲ)在(Ⅱ)的條件下,問是否存在整數(shù)m,使得對任意的正整數(shù)n,都有m-2<Tn<m+2,若存在,求出m的值,若不存在,說明理由.

分析 (I)利用遞推關(guān)系可得.
(Ⅱ)由 b1=1,2bn+1-bn=0知數(shù)列{bn}是等比數(shù)列,${b_n}={(\frac{1}{2})^{n-1}}$,因此${c_n}=n•{(\frac{1}{2})^{n-1}}$,利用“錯位相減法”與等比數(shù)列的求和公式即可得出.
(Ⅲ)由(Ⅱ)知,對任意的n∈N*,都有Tn<4,作差可得Tn+1>Tn,從而1≤Tn<4,即為得出.

解答 解:(Ⅰ)當n=1時,由2a1=2得a1=1,
當n≥2時,由$2{S_n}={n^2}+n$得$2{S_{n-1}}={(n-1)^2}+(n-1)$,
兩式相減得an=n,∵a1=1也滿足此式,
∴${a_n}=n(n∈{N^*})$.
(Ⅱ)由 b1=1,2bn+1-bn=0知數(shù)列{bn}是等比數(shù)列,${b_n}={(\frac{1}{2})^{n-1}}$,
∴${c_n}=n•{(\frac{1}{2})^{n-1}}$,
∵${T_n}=1+2×{(\frac{1}{2})^1}+3×{(\frac{1}{2})^2}+…+n×{(\frac{1}{2})^{n-1}}$
∴$\frac{1}{2}$Tn   $(\frac{1}{2}{)^1}+2×{(\frac{1}{2})^2}+…+(n-1)×{(\frac{1}{2})^{n-1}}+n×(\frac{1}{2}{)^n}$,
兩式相減得$\frac{1}{2}{T_n}=1+{(\frac{1}{2})^1}+{(\frac{1}{2})^2}+…+{(\frac{1}{2})^{n-1}}-n×{(\frac{1}{2})^n}=\frac{{1-{{(\frac{1}{2})}^n}}}{{1-\frac{1}{2}}}-n×{(\frac{1}{2})^n}=2-(n+2){(\frac{1}{2})^n}$,
∴${T_n}=4-(n+2){(\frac{1}{2})^{n-1}}$.
(Ⅲ)由(Ⅱ)知,對任意的n∈N*,都有Tn<4,
∵${T_{n+1}}-{T_n}=(n+2){(\frac{1}{2})^{n-1}}-(n+3){(\frac{1}{2})^n}=(n+1){(\frac{1}{2})^n}>0$,∴Tn+1>Tn,
∴Tn≥T1=1,從而1≤Tn<4.
要使得對任意的正整數(shù)n,都有m-2<Tn<m+2,只需$\left\{\begin{array}{l}m-2<1\\ m+2≥4\end{array}\right.$,即2≤m<3.
故存在整數(shù)m=2,使得對任意的正整數(shù)n,都有m-2<Tn<m+2.

點評 本題考查了“錯位相減法”、等比數(shù)列的通項公式與求和公式、數(shù)列遞推關(guān)系、數(shù)列的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若f'(x)是f(x)的導(dǎo)函數(shù),f'(x)>2f(x)(x∈R),f(${\frac{1}{2}}$)=e,則f(lnx)<x2的解集為(0,$\sqrt{e}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.不等式x2≥4的解集為( 。
A.{x|-2≤x≤2}B.{x|x≤-2或x≥2}C.{x|-2<x<2}D.{x|x<-2或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}的前n項和為Sn,a1=1,2an+1=an,若對于任意n∈N*,當t∈[-1,1]時,不等式x2+tx+1>Sn恒成立,則實數(shù)x的取值范圍為(-∞,$\frac{-1-\sqrt{5}}{2}$]∪[$\frac{1+\sqrt{5}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若x,y滿足$\left\{\begin{array}{l}{x-y+3≥0}\\{x+y+1≥0}\\{x≤k}\end{array}\right.$,且z=2x+y的最大值為6,則k的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知矩陣A=$(\begin{array}{l}{1}&{2}&{-1}\\{2}&{2}&{-3}\end{array})$,矩陣B=$(\begin{array}{l}{a}\\{-2a}\\{3a}\end{array})$.若AB=$(\begin{array}{c}12\\ 22\end{array}\right.)$,則a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)等差數(shù)列{an}的前n項和為Sn,且a3=16,a7=24.
(1)求通項an;
(2)若Sn=312,求項數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,如果(a+b+c)(b+c-a)=3bc,那么角A=(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)平面向量$\overrightarrow{a}$=(cosα,sinα)(0≤a≤2π),$\overrightarrow$=(-$\frac{1}{2},\frac{\sqrt{3}}{2}$),且$\overrightarrow{a}$與$\overrightarrow$不共線.
(1)求證:向量$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$與垂直;
(2)若兩個向量$\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\sqrt{3}$$\overrightarrow$的模相等,求角α.

查看答案和解析>>

同步練習(xí)冊答案