精英家教網 > 高中數學 > 題目詳情
5.已知:cos(${\frac{3π}{2}$+α)=$\frac{1}{3}$,其中α∈(${\frac{π}{2}$,$\frac{3π}{2}}$),則tanα=$-\frac{{\sqrt{2}}}{4}$.

分析 利用已知及誘導公式可求sinα的值,利用同角三角函數基本關系式即可求得cosα,進而可求tanα的值.

解答 解:∵cos(${\frac{3π}{2}$+α)=sinα=$\frac{1}{3}$>0,
又∵α∈(${\frac{π}{2}$,$\frac{3π}{2}}$),
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{2\sqrt{2}}{3}$,
∴tanα=$\frac{sinα}{cosα}$=$-\frac{{\sqrt{2}}}{4}$.
故答案為:$-\frac{{\sqrt{2}}}{4}$.

點評 本題主要考查了誘導公式,同角三角函數基本關系式在三角函數化簡求值中的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

15.(1)已知在極坐標系中,直線l過點(2,0)、傾斜角為$\frac{π}{6}$,求$M(2,\frac{π}{3})$到直線l的距離;
(2)已知直線和橢圓的參數方程分別是$\left\{\begin{array}{l}x=\frac{1}{2}+t\\ y=\frac{1}{2}-t\end{array}$(t∈R,t為參數),$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ\end{array}$(θ為參數),判斷直線與橢圓的位置關系,并說明理由,若相交求出相交弦長.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知函數f(x)=$\left\{\begin{array}{l}\frac{x}{3},0≤x≤\frac{1}{2}\\ \frac{{2{x^3}}}{x+1},\frac{1}{2}<x≤1\end{array}$,若函數g(x)=ax-$\frac{a}{2}$+3(a>0),若對?x1∈[0,1],總?x2∈[0,$\frac{1}{2}$],使得f(x1)=g(x2)成立,則實數a的取值范圍是( 。
A.(-∞,6]B.[6,+∞)C.(-∞,-4]D.[-4,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知向量$\overrightarrow{a}$=(ksinx,cosx),$\overrightarrow$=($\sqrt{3}$cosx,-kcosx),k>0,函數f(x)=$\overrightarrow{a}$•$\overrightarrow$的最大值為1.
(Ⅰ)求k的值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c以f(A)=l,a=2,b+c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.設Sn是等差數列{an}的前n項和,若S672=2,S1344=12,則S2016=( 。
A.22B.26C.30D.34

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.集合A={a+3,log2(a+1)},B={1,b},A=B,則b=4.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.若實數x,y滿足不等式組$\left\{\begin{array}{l}{|x-1|≤1}\\{y≥0}\\{y≤x+1}\end{array}\right.$,則下列結論中正確的是( 。
A.2x-y≥0B.2x-y≤3C.x+y≤6D.x+y<2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.若等比數列{an}的公比q滿足|q|<1,且a2a4=4,a3+a4=3,則$\lim_{n→∞}$(a1+a2+…+an)=16.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.已知sinα-sinβ=1-$\frac{\sqrt{3}}{2}$,cosα-cosβ=$\frac{1}{2}$,則cos(α-β)的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習冊答案