分析 利用已知及誘導公式可求sinα的值,利用同角三角函數基本關系式即可求得cosα,進而可求tanα的值.
解答 解:∵cos(${\frac{3π}{2}$+α)=sinα=$\frac{1}{3}$>0,
又∵α∈(${\frac{π}{2}$,$\frac{3π}{2}}$),
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{2\sqrt{2}}{3}$,
∴tanα=$\frac{sinα}{cosα}$=$-\frac{{\sqrt{2}}}{4}$.
故答案為:$-\frac{{\sqrt{2}}}{4}$.
點評 本題主要考查了誘導公式,同角三角函數基本關系式在三角函數化簡求值中的應用,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,6] | B. | [6,+∞) | C. | (-∞,-4] | D. | [-4,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2x-y≥0 | B. | 2x-y≤3 | C. | x+y≤6 | D. | x+y<2 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com