分析 由A=B,可得$\left\{\begin{array}{l}{a+3=1}\\{lo{g}_{2}(a+1)=b}\end{array}\right.$或$\left\{\begin{array}{l}{a+3=b}\\{lo{g}_{2}(a+1)=1}\end{array}\right.$,解出即可得出.
解答 解:∵A=B,∴$\left\{\begin{array}{l}{a+3=1}\\{lo{g}_{2}(a+1)=b}\end{array}\right.$或$\left\{\begin{array}{l}{a+3=b}\\{lo{g}_{2}(a+1)=1}\end{array}\right.$,
解得a=-2(舍去),或a=1,b=4.
故答案為:4.
點評 本題考查了集合的運算性質(zhì)、方程的解法、分類討論方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 2i | D. | 4i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1 | C. | -$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1 | D. | -$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com