10.集合A={a+3,log2(a+1)},B={1,b},A=B,則b=4.

分析 由A=B,可得$\left\{\begin{array}{l}{a+3=1}\\{lo{g}_{2}(a+1)=b}\end{array}\right.$或$\left\{\begin{array}{l}{a+3=b}\\{lo{g}_{2}(a+1)=1}\end{array}\right.$,解出即可得出.

解答 解:∵A=B,∴$\left\{\begin{array}{l}{a+3=1}\\{lo{g}_{2}(a+1)=b}\end{array}\right.$或$\left\{\begin{array}{l}{a+3=b}\\{lo{g}_{2}(a+1)=1}\end{array}\right.$,
解得a=-2(舍去),或a=1,b=4.
故答案為:4.

點評 本題考查了集合的運算性質(zhì)、方程的解法、分類討論方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.在△ABC中,若AB=4,AC=5,且cosC=$\frac{4}{5}$,則sinB=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.復數(shù)z=1+ai(a∈R)在復平面對應(yīng)的點在第一象限,且|$\overrightarrow{z}$|=$\sqrt{5}$,則z的虛部為( 。
A.2B.4C.2iD.4i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若定義在R上的函數(shù)f(x),滿足f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,則f(2015)+f(2016)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知:cos(${\frac{3π}{2}$+α)=$\frac{1}{3}$,其中α∈(${\frac{π}{2}$,$\frac{3π}{2}}$),則tanα=$-\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在△ABC中,角A,B,C的對邊分別是a,b,c,已知向量$\overrightarrow{m}$=(cosB,cosC),$\overrightarrow{n}$=(4a-b,c),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求cosC的值;
(2)若c=$\sqrt{3}$,△ABC的面積S=$\frac{{\sqrt{15}}}{4}$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.直角三角形ABC的三邊長分別是a,b,c,且c為斜邊的長.
(1)若a,b,c成等比數(shù)列,且a=2,求c的值;
(2)已知a,b,c均為正整數(shù),若a,b,c是三個連續(xù)的整數(shù),求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在△ABC中,角A、B,C所對的邊分別為a、b、c且滿足asinB=b,則當$\sqrt{2}$sinB+sinC取得最大值時,cosB的值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設(shè)雙曲線的實半軸的長為3,一個焦點坐標是($\sqrt{13}$,0),則雙曲線的標準方程是( 。
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1C.-$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1D.-$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

同步練習冊答案