11.已知直線kx-y+1-k=0恒過定點A,且點A在直線mx+ny-1=0(m>0,n>0)上,則mn的最大值為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.2D.4

分析 把直線方程整理成點斜式,求得A點的坐標,代入直線mx+ny-1=0中,求得m+n的值,最后根據(jù)基本不等式求得mn的最大值.

解答 解:整理直線方程得y=k(x-1)+1,
∴點A的坐標為(1,1),
∵點A在直線mx+ny-1=0(m,n>0)上,
∴m+n-1=0,即m+n=1,
∵m>0,n>0,
∴m+n≥2$\sqrt{mn}$,m=n時取等號,
∴mn≤$\frac{1}{4}$,
即mn的最大值為$\frac{1}{4}$,
故選:B.

點評 本題主要考查了基本不等式,直線方程問題,解題的關鍵是求得m+n的值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.把函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}}$)的圖象上的所有點向左平移$\frac{π}{12}$個單位長度,得到函數(shù)y=g(x)的圖象,且g(-x)=g(x),則( 。
A.y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞增,其圖象關于直線x=$\frac{π}{4}$對稱
B.y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞增,其圖象關于直線x=$\frac{π}{2}$對稱
C.y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞減,其圖象關于直線x=$\frac{π}{4}$對稱
D.y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞減,其圖象關于直線x=$\frac{π}{2}$對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與拋物線y2=-8x有相同的焦點,且雙曲線過點M(3,$\sqrt{2}$),則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{3}$-y2=1B.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{4}$=1C.x2-$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{8}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知等差數(shù)列{an}的前n項和為Sn,若a1=1,S4=10,則S6=21.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某算法的流程圖如圖所示,運行相應程序,輸出S的值是(  )
A.60B.61C.62D.63

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.等差數(shù)列{an}的前n項和為Sn,若a1=2,S3=12,則S6等于( 。
A.84B.57C.45D.42

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(2,2),若$\overrightarrow{a}$∥$\overrightarrow$,則($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設函數(shù)f(x)=x2+bx+c(a≠0,b,c∈R),若f(1+x)=f(1-x),f(x)的最小值為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若函數(shù)y=|f(x)|與y=t相交于4個不同交點,從左到右依次為A,B,C,D,是否存在實數(shù)t,使得線段|AB|,|BC|,|CD|能構成銳角三角形,如果存在,求出t的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知四棱錐P-ABCD的底面ABCD是菱形,∠ABC=60°,AB=PC=2,$PA=PD=\sqrt{2}$.
(1)求證:平面PAD⊥平面ABCD;
(2)求二面角A-PC-B的余弦值.

查看答案和解析>>

同步練習冊答案