3.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(2,2),若$\overrightarrow{a}$∥$\overrightarrow$,則($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$=( 。
A.2B.4C.6D.8

分析 利用向量共線定理和數(shù)量積的運(yùn)算即可得出.

解答 解:∵向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(2,2),$\overrightarrow{a}$∥$\overrightarrow$,
∴1×2=2x,
解得x=1,
∴$\overrightarrow{a}$+$\overrightarrow$=(3,3),
∴($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$=1×3+1×3=6,
故選:C

點(diǎn)評 本題考查了向量共線定理、數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在某海洋軍事演習(xí)編隊(duì)中,指揮艦00號與驅(qū)逐艦01號、02號的距離一直保持100海里的距離,當(dāng)驅(qū)逐艦01號在指揮艦00號的北偏東15°,02號在00號南偏東45°時(shí),則驅(qū)逐艦01號與02號相距(  )
A.100海里B.100$\sqrt{2}$海里C.100$\sqrt{3}$海里D.200海里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.圓心C(2,1),半徑為3的圓的參數(shù)方程是(  )
A.$\left\{\begin{array}{l}x=2+3cosθ\\ y=1+3sinθ\end{array}\right.(θ為參數(shù))$B.$\left\{\begin{array}{l}x=-2+3cosθ\\ y=-1+3sinθ\end{array}\right.(θ為參數(shù))$
C.$\left\{\begin{array}{l}x=2-3cosθ\\ y=1-3sinθ\end{array}\right.(θ為常數(shù))$D.$\left\{\begin{array}{l}x=-2-3cosθ\\ y=-1-3sinθ\end{array}\right.(θ為參數(shù))$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線kx-y+1-k=0恒過定點(diǎn)A,且點(diǎn)A在直線mx+ny-1=0(m>0,n>0)上,則mn的最大值為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,PC=AD=CD=$\frac{1}{2}$AB=2,AB∥DC,AD⊥CD,PC⊥平面ABCD.
(1)求證:BC⊥平面PAC;
(2)若M為線段PA的中點(diǎn),且過C,D,M三點(diǎn)的平面與線段PB交于點(diǎn)N,確定點(diǎn)N的位置,說明理由;并求AN與平面ABCD所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=3n+1-3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=lgan,設(shè)Tn為{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若a>0且a≠1,則函數(shù)y=ax與y=loga(-x)的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.將一枚骰子連續(xù)拋兩次,得到正面朝上的點(diǎn)數(shù)分別為x、y,記事件為A“x+y為偶數(shù)”,事件B“x+y<7”,則P(B|A)的值為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{5}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖:四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=2,PD=AB=$\sqrt{2}$,E,F(xiàn)分別為線段PD和BC的中點(diǎn).
(1)求證:CE∥平面PAF;
(2)在線段BC上是否存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案