A. | $\frac{x^2}{4}-{y^2}=1$ | B. | ${x^2}-\frac{y^2}{4}=1$ | C. | $\frac{x^2}{16}-{y^2}=1$ | D. | ${x^2}-\frac{y^2}{16}=1$ |
分析 由雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的漸近線方程為y=±$\frac{a}$x,分別求出選項A,B,C,D的漸近線方程,即可得到所求結(jié)論.
解答 解:由雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的漸近線方程為y=±$\frac{a}$x,
可得$\frac{{x}^{2}}{4}$-y2=1的漸近線方程為y=±$\frac{1}{2}$x;
x2-$\frac{{y}^{2}}{4}$=1的漸近線方程為y=±2x;
$\frac{{x}^{2}}{16}$-y2=1的漸近線方程為y=±$\frac{1}{4}$x;
x2-$\frac{{y}^{2}}{16}$=1的漸近線方程為y=±4x.
故選:D.
點評 本題考查雙曲線的漸近線方程的求法,注意運用雙曲線方程和漸近線方程的關(guān)系,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,4) | B. | (2,3) | C. | $(\sqrt{3},4)$ | D. | $(\sqrt{3},2)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{\frac{π}{6},\frac{5π}{6}}]$ | B. | $({\frac{π}{6},\frac{5π}{6}})$ | C. | $({\frac{π}{6},\frac{π}{2}})∪({\frac{π}{2},\frac{5π}{6}})$ | D. | $[{\frac{π}{6},\frac{π}{2}})∪({\frac{π}{2},\frac{5π}{6}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [16,64] | B. | [16,32) | C. | [32,64) | D. | (32,64) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com