3.下列雙曲線中,漸近線方程為y=±4x的是( 。
A.$\frac{x^2}{4}-{y^2}=1$B.${x^2}-\frac{y^2}{4}=1$C.$\frac{x^2}{16}-{y^2}=1$D.${x^2}-\frac{y^2}{16}=1$

分析 由雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的漸近線方程為y=±$\frac{a}$x,分別求出選項A,B,C,D的漸近線方程,即可得到所求結(jié)論.

解答 解:由雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的漸近線方程為y=±$\frac{a}$x,
可得$\frac{{x}^{2}}{4}$-y2=1的漸近線方程為y=±$\frac{1}{2}$x;
x2-$\frac{{y}^{2}}{4}$=1的漸近線方程為y=±2x;
$\frac{{x}^{2}}{16}$-y2=1的漸近線方程為y=±$\frac{1}{4}$x;
x2-$\frac{{y}^{2}}{16}$=1的漸近線方程為y=±4x.
故選:D.

點評 本題考查雙曲線的漸近線方程的求法,注意運用雙曲線方程和漸近線方程的關(guān)系,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某班共有15人參加數(shù)學(xué)和物理課外興趣小組,其中只參加數(shù)學(xué)興趣小組的有5人,兩個小組都參加的有4人,則只參加物理興趣小組的有6人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a,b>0)的右焦點F,且斜率為2的直線l與雙曲線的相交于點A,B,若弦AB的中點橫坐標(biāo)取值范圍為(2c,4c),則該雙曲線的離心率的取值范圍是( 。
A.(3,4)B.(2,3)C.$(\sqrt{3},4)$D.$(\sqrt{3},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,正三棱柱ABC-A1B1C1中,AB=4,AA1=6.若E,F(xiàn)分別是棱BB1,CC1上的點,則三棱錐A-A1EF的體積是8$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.過原點的直線l與雙曲線$\frac{x^2}{9}-\frac{y^2}{3}=-1$有兩個交點,則直線l的傾斜角的取值范圍是( 。
A.$[{\frac{π}{6},\frac{5π}{6}}]$B.$({\frac{π}{6},\frac{5π}{6}})$C.$({\frac{π}{6},\frac{π}{2}})∪({\frac{π}{2},\frac{5π}{6}})$D.$[{\frac{π}{6},\frac{π}{2}})∪({\frac{π}{2},\frac{5π}{6}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在四棱錐P-ABCD中,PA⊥底面ABCD,AB=AD=2,CB=CD=$\sqrt{7}$,∠BAD=120°,點E在線段AC上,且AE=2EC,F(xiàn)為線段PC的中點.
(1)求證:EF∥平面PBD;
(2)若二面角B-PC-D的平面角的余弦值為$\frac{1}{5}$,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.給出下列四個命題:①若α、β∈(0,$\frac{π}{2}$)且α<β,則sinα>sinβ;②若α∈(0,$\frac{π}{4}$),則cosα>sinα;③若α∈(0,$\frac{π}{2}$),則sinα+cosα>1;④若α∈(0,$\frac{π}{2}$),則sinα<α<tanα,以上四個命題中真命題的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.A${\;}_{2n}^{n+3}$-A${\;}_{4}^{n+1}$(n∈N*)的值為696.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,若輸出的S的值為$\frac{5}{2}$,則實數(shù)k的取值范圍為( 。
A.[16,64]B.[16,32)C.[32,64)D.(32,64)

查看答案和解析>>

同步練習(xí)冊答案