19.f(x)=$\frac{1}{\sqrt{-lo{g}_{2}x}}$的定義域為{x|0<x<1}.

分析 根據(jù)函數(shù)的解析式,列出使函數(shù)解析式有意義的不等式組,求出解集即可.

解答 解:函數(shù)f(x)=$\frac{1}{\sqrt{-lo{g}_{2}x}}$的定義域滿足:$\left\{\begin{array}{l}{x>0}\\{-lo{g}_{2}x>0}\end{array}\right.$,解得:0<x<1.
所以函數(shù)f(x)=$\frac{1}{\sqrt{-lo{g}_{2}x}}$的定義域為{x|0<x<1}.
故答案為:{x|0<x<1}.

點評 本題考查了定義域的求法和對數(shù)的計算.屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD=2,A是PB中點.E是BC中點.現(xiàn)沿AD把平面PAD折起,使得PA⊥AB,連結(jié)PB.

(Ⅰ)求證:DE⊥平面PAE;
(Ⅱ)求AE與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.把y=sinx的圖象向右平移$\frac{π}{8}$后,再把各點橫坐標伸長到原來的2倍,得到的函數(shù)的解析式為( 。
A.y=sin($\frac{x}{2}$-$\frac{π}{8}$)B.y=sin($\frac{x}{2}$+$\frac{π}{8}$)C.y=sin(2x-$\frac{π}{8}$)D.y=sin(2x-$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若將函數(shù)f(x)=2sin(2x+$\frac{π}{3}}$)的圖象向右平移φ個單位,所得圖象關(guān)于y軸對稱,則φ的最小正值是(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$-\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.解不等式:
(1)x(x+2)>x(3-x)+1;
(2)$\frac{1-x}{2+x}$≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若直線l與拋物線y2=4x交于A,B兩點,且線段AB的中點為M(3,2),則直線l的方程為( 。
A.x-y-1=0B.x+y-5=0C.2x-y-4=0D.2x+y-8=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在直三棱柱ABC-A1B1C1中,D是BC的中點.
(Ⅰ)求證:A1B∥平面ADC1
(Ⅱ)若AB⊥AC,AB=AC=1,AA1=2,求平面ADC1與平面ABC所成的銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知正方體ABCD-A1B1C1D1,點E,F(xiàn)分別是棱BC,CC1的中點,Q是側(cè)面BCC1B1內(nèi)一點,若A1Q∥平面AEF,則點Q的軌跡為(  )
A.一個點B.兩個點C.一條線段D.兩條線段

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在△ABC中,能判斷三角形是銳角三角形的條件是( 。
A.sinA+sinB=0.2B.$\overrightarrow{AB}$•$\overrightarrow{BC}$<0
C.b=3,c=3$\sqrt{3}$,B=30°D.tanA+tanB+tanC>0

查看答案和解析>>

同步練習冊答案