分析 先求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.
解答 解:∵f(x)=$\frac{{k}^{2}}{x}$+x,k>0,
∴f′(x)=1-$\frac{{k}^{2}}{{x}^{2}}$=$\frac{{x}^{2}{-k}^{2}}{{x}^{2}}$,
令f′(x)>0,解得x>k或x<-k,
令f′(x)<0,解得:0<x<k或-k<x<0,
∴f(x)在(-∞,-k),(k,+∞)遞增,在(-k,0),(0,k)遞減,
∴f(x)極小值=f(k)=2k,f(x)極大值=f(-k)=-2k.
點評 本題考查了求函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{6}}}{4}$ | B. | $-\frac{{\sqrt{2}}}{4}$ | C. | $\frac{{\sqrt{6}}}{4}$ | D. | $\frac{{\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com