4.已知F1,F(xiàn)2分別是雙曲線3x2-5y2=75的左焦點和右焦點,P是雙曲線上的一點,且∠F1PF2=60°,求三角形F1PF2的面積.

分析 化雙曲線方程為標準方程,求出a2,b2的值,進一步求得c,在焦點三角形F1PF2中,由余弦定理與雙曲線定義求得PF1•PF2,然后代入三角形面積公式求得答案.

解答 解:由雙曲線3x2-5y2=75,得$\frac{{x}^{2}}{25}-\frac{{y}^{2}}{15}=1$,
∴a2=25,b2=15,則$c=\sqrt{{a}^{2}+^{2}}=\sqrt{40}=2\sqrt{10}$.
在△F1PF2中,由余弦定理可得160=PF12+PF22-2PF1•PF2cos60°=(PF1-PF22+PF1•PF2=100+PF1•PF2
∴PF1•PF2=60.
則${S}_{△{F}_{1}P{F}_{2}}=\frac{1}{2}$PF1•PF2sin60°=$\frac{1}{2}×60×\frac{\sqrt{3}}{2}=15\sqrt{3}$.

點評 本題主要考查雙曲線的簡單性質,考查焦點三角形中余弦定理與雙曲線定義的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,一平面與空間四邊形ABCD的對角線AC,BD都平行,且交空間四邊形的邊AB,BC,CD,DA分別于E,F(xiàn),G,H.
(1)求證:四邊形EFGH為平行四邊形;
(2)若E是邊AB的中點,AC=6,BD=8,異面直線AC與BD所成的角為60°,求線段EG的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知復數(shù)z滿足i=z(1-i),其中i為虛數(shù)單位,則復數(shù)$\overline z$所對應的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在△ABC中,內角A,B,C所對的邊分別為a,b,c,A=$\frac{π}{4}$,b2-a2=$\frac{1}{2}{c^2}$,則tanC=( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤1}\\{x-y≥1}\\{y≥-2}\end{array}\right.$,則x2+y2的最大值為13.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設等差數(shù)列{an}的前n項和為Sn,公差為d,已知S2,S3+1,S4成等差數(shù)列.
(1)求公差d的值;
(2)若a1,a2,a5成等比數(shù)列
①求數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項和Tn
②求$\frac{2{a}_{n}-1}{2{S}_{n}}$(n∈N*)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設變量x、y滿足約束條件$\left\{\begin{array}{l}{2x+y≤4}\\{4x-y≥-1}\\{x+2y≥2}\end{array}\right.$,則目標函數(shù)z=3x-y的取值范圍是[-$\frac{3}{2}$,6].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知sinα=$\frac{1}{6}$,則sin2α-cos2α的值為( 。
A.$\frac{17}{18}$B.-$\frac{17}{18}$C.$\frac{18}{17}$D.-$\frac{18}{17}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知拋物線C:x2=4y的焦點為F,C的準線和對稱軸交于點M,點P是C上一點,且滿足|PM|=λ|PF|,當λ取最大值時,點P恰好在以M、F為焦點的雙曲線上,則雙曲線的離心率為$\sqrt{2}$+1.

查看答案和解析>>

同步練習冊答案